Machine Learning Feature Selection Methods for Landslide Susceptibility Mapping
This paper explores the use of adaptive support vector machines, random forests and AdaBoost for landslide susceptibility mapping in three separated regions of Canton Vaud, Switzerland, based on a set of geological, hydrological and morphological features. The feature selection properties of the thr...
Gespeichert in:
Veröffentlicht in: | Mathematical geosciences 2014-01, Vol.46 (1), p.33-57 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 57 |
---|---|
container_issue | 1 |
container_start_page | 33 |
container_title | Mathematical geosciences |
container_volume | 46 |
creator | Micheletti, Natan Foresti, Loris Robert, Sylvain Leuenberger, Michael Pedrazzini, Andrea Jaboyedoff, Michel Kanevski, Mikhail |
description | This paper explores the use of adaptive support vector machines, random forests and AdaBoost for landslide susceptibility mapping in three separated regions of Canton Vaud, Switzerland, based on a set of geological, hydrological and morphological features. The feature selection properties of the three algorithms are studied to analyze the relevance of features in controlling the spatial distribution of landslides. The elimination of irrelevant features gives simpler, lower dimensional models while keeping the classification performance high. An object-based sampling procedure is considered to reduce the spatial autocorrelation of data and to estimate more reliably generalization skills when applying the model to predict the occurrence of new unknown landslides. The accuracy of the models, the relevance of features and the quality of landslide susceptibility maps were found to be high in the regions characterized by shallow landslides and low in the ones with deep-seated landslides. Despite providing similar skill, random forests and AdaBoost were found to be more efficient in performing feature selection than adaptive support vector machines. The results of this study reveal the strengths of the classification algorithms, but evidence: (1) the need for relying on more than one method for the identification of relevant variables; (2) the weakness of the adaptive scaling algorithm when used with landslide data; and (3) the lack of additional features which characterize the spatial distribution of deep-seated landslides. |
doi_str_mv | 10.1007/s11004-013-9511-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671446554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3189178621</sourcerecordid><originalsourceid>FETCH-LOGICAL-a541t-44beee89a9c621bf49a7c62b1f49ce458ee97092609917ab76a8f0200914ba503</originalsourceid><addsrcrecordid>eNqFkUFLxDAQhYMouK7-AG8FL16qmTZJm6Msrgote1DPIe1Od7N005q0h_33ZqmICOJpHsz3hpl5hFwDvQNKs3sPobCYQhpLDhDTEzKDPGNxLnl6-q0FnJML73eUCkg5zMiq1PXWWIwK1M4au4mWqIfRYfSKLdaD6WxU4rDt1j5qOhcV2q59a9ahP_oa-8FUpjXDISp13wf7JTlrdOvx6qvOyfvy8W3xHBerp5fFQxFrzmCIGasQMZda1iKBqmFSZ0FVEFSNjOeIMqMyEVRKyHSVCZ03NKFUAqs0p-mc3E5ze9d9jOgHtTdhn7bVFrvRKxAZMCY4Z_-jPDxQsDx8ZE5ufqG7bnQ2HKKASUiSgMpAwUTVrvPeYaN6Z_baHRRQdUxDTWmokIY6pqGO-yaTxwfWbtD9mPyn6RNynor5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1491225009</pqid></control><display><type>article</type><title>Machine Learning Feature Selection Methods for Landslide Susceptibility Mapping</title><source>SpringerLink Journals - AutoHoldings</source><creator>Micheletti, Natan ; Foresti, Loris ; Robert, Sylvain ; Leuenberger, Michael ; Pedrazzini, Andrea ; Jaboyedoff, Michel ; Kanevski, Mikhail</creator><creatorcontrib>Micheletti, Natan ; Foresti, Loris ; Robert, Sylvain ; Leuenberger, Michael ; Pedrazzini, Andrea ; Jaboyedoff, Michel ; Kanevski, Mikhail</creatorcontrib><description>This paper explores the use of adaptive support vector machines, random forests and AdaBoost for landslide susceptibility mapping in three separated regions of Canton Vaud, Switzerland, based on a set of geological, hydrological and morphological features. The feature selection properties of the three algorithms are studied to analyze the relevance of features in controlling the spatial distribution of landslides. The elimination of irrelevant features gives simpler, lower dimensional models while keeping the classification performance high. An object-based sampling procedure is considered to reduce the spatial autocorrelation of data and to estimate more reliably generalization skills when applying the model to predict the occurrence of new unknown landslides. The accuracy of the models, the relevance of features and the quality of landslide susceptibility maps were found to be high in the regions characterized by shallow landslides and low in the ones with deep-seated landslides. Despite providing similar skill, random forests and AdaBoost were found to be more efficient in performing feature selection than adaptive support vector machines. The results of this study reveal the strengths of the classification algorithms, but evidence: (1) the need for relying on more than one method for the identification of relevant variables; (2) the weakness of the adaptive scaling algorithm when used with landslide data; and (3) the lack of additional features which characterize the spatial distribution of deep-seated landslides.</description><identifier>ISSN: 1874-8961</identifier><identifier>EISSN: 1874-8953</identifier><identifier>DOI: 10.1007/s11004-013-9511-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Artificial intelligence ; Chemistry and Earth Sciences ; Classification ; Computer Science ; Earth and Environmental Science ; Earth Sciences ; Geotechnical Engineering & Applied Earth Sciences ; Hydrogeology ; Landslides ; Landslides & mudslides ; Machine learning ; Mapping ; Mathematical analysis ; Mathematical models ; Physics ; Risk assessment ; Spatial distribution ; Statistics for Engineering ; Support vector machines</subject><ispartof>Mathematical geosciences, 2014-01, Vol.46 (1), p.33-57</ispartof><rights>International Association for Mathematical Geosciences 2013</rights><rights>International Association for Mathematical Geosciences 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a541t-44beee89a9c621bf49a7c62b1f49ce458ee97092609917ab76a8f0200914ba503</citedby><cites>FETCH-LOGICAL-a541t-44beee89a9c621bf49a7c62b1f49ce458ee97092609917ab76a8f0200914ba503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11004-013-9511-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11004-013-9511-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Micheletti, Natan</creatorcontrib><creatorcontrib>Foresti, Loris</creatorcontrib><creatorcontrib>Robert, Sylvain</creatorcontrib><creatorcontrib>Leuenberger, Michael</creatorcontrib><creatorcontrib>Pedrazzini, Andrea</creatorcontrib><creatorcontrib>Jaboyedoff, Michel</creatorcontrib><creatorcontrib>Kanevski, Mikhail</creatorcontrib><title>Machine Learning Feature Selection Methods for Landslide Susceptibility Mapping</title><title>Mathematical geosciences</title><addtitle>Math Geosci</addtitle><description>This paper explores the use of adaptive support vector machines, random forests and AdaBoost for landslide susceptibility mapping in three separated regions of Canton Vaud, Switzerland, based on a set of geological, hydrological and morphological features. The feature selection properties of the three algorithms are studied to analyze the relevance of features in controlling the spatial distribution of landslides. The elimination of irrelevant features gives simpler, lower dimensional models while keeping the classification performance high. An object-based sampling procedure is considered to reduce the spatial autocorrelation of data and to estimate more reliably generalization skills when applying the model to predict the occurrence of new unknown landslides. The accuracy of the models, the relevance of features and the quality of landslide susceptibility maps were found to be high in the regions characterized by shallow landslides and low in the ones with deep-seated landslides. Despite providing similar skill, random forests and AdaBoost were found to be more efficient in performing feature selection than adaptive support vector machines. The results of this study reveal the strengths of the classification algorithms, but evidence: (1) the need for relying on more than one method for the identification of relevant variables; (2) the weakness of the adaptive scaling algorithm when used with landslide data; and (3) the lack of additional features which characterize the spatial distribution of deep-seated landslides.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Chemistry and Earth Sciences</subject><subject>Classification</subject><subject>Computer Science</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>Landslides</subject><subject>Landslides & mudslides</subject><subject>Machine learning</subject><subject>Mapping</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Physics</subject><subject>Risk assessment</subject><subject>Spatial distribution</subject><subject>Statistics for Engineering</subject><subject>Support vector machines</subject><issn>1874-8961</issn><issn>1874-8953</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkUFLxDAQhYMouK7-AG8FL16qmTZJm6Msrgote1DPIe1Od7N005q0h_33ZqmICOJpHsz3hpl5hFwDvQNKs3sPobCYQhpLDhDTEzKDPGNxLnl6-q0FnJML73eUCkg5zMiq1PXWWIwK1M4au4mWqIfRYfSKLdaD6WxU4rDt1j5qOhcV2q59a9ahP_oa-8FUpjXDISp13wf7JTlrdOvx6qvOyfvy8W3xHBerp5fFQxFrzmCIGasQMZda1iKBqmFSZ0FVEFSNjOeIMqMyEVRKyHSVCZ03NKFUAqs0p-mc3E5ze9d9jOgHtTdhn7bVFrvRKxAZMCY4Z_-jPDxQsDx8ZE5ufqG7bnQ2HKKASUiSgMpAwUTVrvPeYaN6Z_baHRRQdUxDTWmokIY6pqGO-yaTxwfWbtD9mPyn6RNynor5</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Micheletti, Natan</creator><creator>Foresti, Loris</creator><creator>Robert, Sylvain</creator><creator>Leuenberger, Michael</creator><creator>Pedrazzini, Andrea</creator><creator>Jaboyedoff, Michel</creator><creator>Kanevski, Mikhail</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7TB</scope></search><sort><creationdate>20140101</creationdate><title>Machine Learning Feature Selection Methods for Landslide Susceptibility Mapping</title><author>Micheletti, Natan ; Foresti, Loris ; Robert, Sylvain ; Leuenberger, Michael ; Pedrazzini, Andrea ; Jaboyedoff, Michel ; Kanevski, Mikhail</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a541t-44beee89a9c621bf49a7c62b1f49ce458ee97092609917ab76a8f0200914ba503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Chemistry and Earth Sciences</topic><topic>Classification</topic><topic>Computer Science</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>Landslides</topic><topic>Landslides & mudslides</topic><topic>Machine learning</topic><topic>Mapping</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Physics</topic><topic>Risk assessment</topic><topic>Spatial distribution</topic><topic>Statistics for Engineering</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Micheletti, Natan</creatorcontrib><creatorcontrib>Foresti, Loris</creatorcontrib><creatorcontrib>Robert, Sylvain</creatorcontrib><creatorcontrib>Leuenberger, Michael</creatorcontrib><creatorcontrib>Pedrazzini, Andrea</creatorcontrib><creatorcontrib>Jaboyedoff, Michel</creatorcontrib><creatorcontrib>Kanevski, Mikhail</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><jtitle>Mathematical geosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Micheletti, Natan</au><au>Foresti, Loris</au><au>Robert, Sylvain</au><au>Leuenberger, Michael</au><au>Pedrazzini, Andrea</au><au>Jaboyedoff, Michel</au><au>Kanevski, Mikhail</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning Feature Selection Methods for Landslide Susceptibility Mapping</atitle><jtitle>Mathematical geosciences</jtitle><stitle>Math Geosci</stitle><date>2014-01-01</date><risdate>2014</risdate><volume>46</volume><issue>1</issue><spage>33</spage><epage>57</epage><pages>33-57</pages><issn>1874-8961</issn><eissn>1874-8953</eissn><abstract>This paper explores the use of adaptive support vector machines, random forests and AdaBoost for landslide susceptibility mapping in three separated regions of Canton Vaud, Switzerland, based on a set of geological, hydrological and morphological features. The feature selection properties of the three algorithms are studied to analyze the relevance of features in controlling the spatial distribution of landslides. The elimination of irrelevant features gives simpler, lower dimensional models while keeping the classification performance high. An object-based sampling procedure is considered to reduce the spatial autocorrelation of data and to estimate more reliably generalization skills when applying the model to predict the occurrence of new unknown landslides. The accuracy of the models, the relevance of features and the quality of landslide susceptibility maps were found to be high in the regions characterized by shallow landslides and low in the ones with deep-seated landslides. Despite providing similar skill, random forests and AdaBoost were found to be more efficient in performing feature selection than adaptive support vector machines. The results of this study reveal the strengths of the classification algorithms, but evidence: (1) the need for relying on more than one method for the identification of relevant variables; (2) the weakness of the adaptive scaling algorithm when used with landslide data; and (3) the lack of additional features which characterize the spatial distribution of deep-seated landslides.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11004-013-9511-0</doi><tpages>25</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1874-8961 |
ispartof | Mathematical geosciences, 2014-01, Vol.46 (1), p.33-57 |
issn | 1874-8961 1874-8953 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671446554 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Artificial intelligence Chemistry and Earth Sciences Classification Computer Science Earth and Environmental Science Earth Sciences Geotechnical Engineering & Applied Earth Sciences Hydrogeology Landslides Landslides & mudslides Machine learning Mapping Mathematical analysis Mathematical models Physics Risk assessment Spatial distribution Statistics for Engineering Support vector machines |
title | Machine Learning Feature Selection Methods for Landslide Susceptibility Mapping |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A15%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%20Feature%20Selection%20Methods%20for%20Landslide%20Susceptibility%20Mapping&rft.jtitle=Mathematical%20geosciences&rft.au=Micheletti,%20Natan&rft.date=2014-01-01&rft.volume=46&rft.issue=1&rft.spage=33&rft.epage=57&rft.pages=33-57&rft.issn=1874-8961&rft.eissn=1874-8953&rft_id=info:doi/10.1007/s11004-013-9511-0&rft_dat=%3Cproquest_cross%3E3189178621%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1491225009&rft_id=info:pmid/&rfr_iscdi=true |