Machine Learning Feature Selection Methods for Landslide Susceptibility Mapping
This paper explores the use of adaptive support vector machines, random forests and AdaBoost for landslide susceptibility mapping in three separated regions of Canton Vaud, Switzerland, based on a set of geological, hydrological and morphological features. The feature selection properties of the thr...
Gespeichert in:
Veröffentlicht in: | Mathematical geosciences 2014-01, Vol.46 (1), p.33-57 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper explores the use of adaptive support vector machines, random forests and AdaBoost for landslide susceptibility mapping in three separated regions of Canton Vaud, Switzerland, based on a set of geological, hydrological and morphological features. The feature selection properties of the three algorithms are studied to analyze the relevance of features in controlling the spatial distribution of landslides. The elimination of irrelevant features gives simpler, lower dimensional models while keeping the classification performance high. An object-based sampling procedure is considered to reduce the spatial autocorrelation of data and to estimate more reliably generalization skills when applying the model to predict the occurrence of new unknown landslides. The accuracy of the models, the relevance of features and the quality of landslide susceptibility maps were found to be high in the regions characterized by shallow landslides and low in the ones with deep-seated landslides. Despite providing similar skill, random forests and AdaBoost were found to be more efficient in performing feature selection than adaptive support vector machines. The results of this study reveal the strengths of the classification algorithms, but evidence: (1) the need for relying on more than one method for the identification of relevant variables; (2) the weakness of the adaptive scaling algorithm when used with landslide data; and (3) the lack of additional features which characterize the spatial distribution of deep-seated landslides. |
---|---|
ISSN: | 1874-8961 1874-8953 |
DOI: | 10.1007/s11004-013-9511-0 |