Computing optimal islands
Let S be a bicolored set of n points in the plane. A subset I of S is an island if there is a convex set C such that I = C ∩ S . We give an O ( n 3 ) -time algorithm to compute a monochromatic island of maximum cardinality. Our approach is adapted to optimize similar (decomposable) objective functio...
Gespeichert in:
Veröffentlicht in: | Operations research letters 2011-07, Vol.39 (4), p.246-251 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
S
be a bicolored set of
n
points in the plane. A subset
I
of
S
is an
island if there is a convex set
C
such that
I
=
C
∩
S
. We give an
O
(
n
3
)
-time algorithm to compute a monochromatic island of maximum cardinality. Our approach is adapted to optimize similar (decomposable) objective functions. Finally, we use our algorithm to give an
O
(
log
n
)
-approximation for the problem of computing the minimum number of convex polygons that cover a class region. |
---|---|
ISSN: | 0167-6377 1872-7468 |
DOI: | 10.1016/j.orl.2011.04.008 |