Computing optimal islands

Let S be a bicolored set of n points in the plane. A subset I of S is an island if there is a convex set C such that I = C ∩ S . We give an O ( n 3 ) -time algorithm to compute a monochromatic island of maximum cardinality. Our approach is adapted to optimize similar (decomposable) objective functio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Operations research letters 2011-07, Vol.39 (4), p.246-251
Hauptverfasser: Bautista-Santiago, C., Díaz-Báñez, J.M., Lara, D., Pérez-Lantero, P., Urrutia, J., Ventura, I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let S be a bicolored set of n points in the plane. A subset I of S is an island if there is a convex set C such that I = C ∩ S . We give an O ( n 3 ) -time algorithm to compute a monochromatic island of maximum cardinality. Our approach is adapted to optimize similar (decomposable) objective functions. Finally, we use our algorithm to give an O ( log n ) -approximation for the problem of computing the minimum number of convex polygons that cover a class region.
ISSN:0167-6377
1872-7468
DOI:10.1016/j.orl.2011.04.008