On efficient numerical methods for an initial-boundary value problem with nonlocal boundary conditions

Many physical phenomena are modeled by nonclassical hyperbolic boundary value problems with nonlocal boundary conditions. In this paper, the problem of solving the one-dimensional wave equation subject to given initial and non-local boundary conditions is considered. These non-local conditions arise...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematical modelling 2012-08, Vol.36 (8), p.3411-3418
Hauptverfasser: Martín-Vaquero, J., Wade, B.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many physical phenomena are modeled by nonclassical hyperbolic boundary value problems with nonlocal boundary conditions. In this paper, the problem of solving the one-dimensional wave equation subject to given initial and non-local boundary conditions is considered. These non-local conditions arise mainly when the data on the boundary cannot be measured directly. Several finite difference methods with low order have been proposed in other papers for the numerical solution of this one dimensional non-classic boundary value problem. Here, we derive a new family of efficient three-level algorithms with higher order to solve the wave equation and also use a Simpson formula with higher order to approximate the integral conditions. Additionally, the fourth-order formula is also adapted to nonlinear equations, in particular to the well-known nonlinear Klein–Gordon equations which many physical problems can be modeled with. Numerical results are presented and are compared with some existing methods showing the efficiency of the new algorithms.
ISSN:0307-904X
DOI:10.1016/j.apm.2011.10.021