A Reconfigurable TDMP Decoder for Raptor Codes

A Raptor code is a concatenation of a fixed rate precode and a Luby-Transform (LT) code that can be used as a rateless error-correcting code over communication channels. By definition, Raptor codes are characterized by irregularity features such as dynamic rate, check-degree variability, and joint c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of signal processing systems 2012-12, Vol.69 (3), p.293-304
Hauptverfasser: Zeineddine, Hady, Mansour, Mohammad M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A Raptor code is a concatenation of a fixed rate precode and a Luby-Transform (LT) code that can be used as a rateless error-correcting code over communication channels. By definition, Raptor codes are characterized by irregularity features such as dynamic rate, check-degree variability, and joint coding, which make the design of hardware-efficient decoders a challenging task. In this paper, serial turbo decoding of architecture-aware Raptor codes is mapped into sequential row processing of a regular matrix by using a combination of code enhancements and architectural optimizations. The proposed mapping approach is based on three basic steps: (1) applying systematic permutations on the source matrix of the Raptor code, (2) confining LT random encoding to pseudo-random permutation of messages and periodic selection of row-splitting scenarios, and (3) developing a reconfigurable parallel check-node processor that attains a constant throughput while processing LT- and LDPC-nodes of varying degrees and count. The decoder scheduling is, thus, made simple and uniform across both LDPC and LT decoding. A serial decoder implementing the proposed approach was synthesized in 65 nm, 1.2 V CMOS technology. Hardware simulations show that the decoder, decoding a rate-0.4 code instance, achieves a throughput of 36 Mb/s at SNR of 1.5 dB, dissipates an average power of 27 mW and occupies an area of 0.55 mm 2 .
ISSN:1939-8018
1939-8115
DOI:10.1007/s11265-012-0680-8