Modulated resonant versus pulsed resonant photoacoustics in trace gas detection
Modulated resonant photoacoustics is a sensitive technique widely used for trace gas sensing. Generally, a continuous-wave laser is modulated at a frequency corresponding to an acoustic resonance of a photoacoustic cell. Another mode of operation—which we propose to call the pulsed resonant mode—con...
Gespeichert in:
Veröffentlicht in: | Applied physics. B, Lasers and optics Lasers and optics, 2009-08, Vol.96 (2-3), p.561-566 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Modulated resonant photoacoustics is a sensitive technique widely used for trace gas sensing. Generally, a continuous-wave laser is modulated at a frequency corresponding to an acoustic resonance of a photoacoustic cell. Another mode of operation—which we propose to call the pulsed resonant mode—consists in matching the frequency repetition rate of a pulsed laser to an acoustic resonance of the cell. We present a theoretical model to compare the performance of these two configurations. For a given average power of the incoming light inside the cell, the pulsed resonant mode of operation (nanosecond pulses or shorter) produces
π
/2 times higher photoacoustic signals than the modulated resonant scheme (the latter is optimized for a 50% duty cycle). This result agrees with experiments during which both cases were investigated at 532 nm using the same photoacoustic cell containing trace concentrations of NO
2
. |
---|---|
ISSN: | 0946-2171 1432-0649 |
DOI: | 10.1007/s00340-009-3572-2 |