Classification of Epilepsy Using High-Order Spectra Features and Principle Component Analysis
The classification of epileptic electroencephalogram (EEG) signals is challenging because of high nonlinearity, high dimensionality, and hidden states in EEG recordings. The detection of the preictal state is difficult due to its similarity to the ictal state. We present a framework for using princi...
Gespeichert in:
Veröffentlicht in: | Journal of medical systems 2012-06, Vol.36 (3), p.1731-1743 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The classification of epileptic electroencephalogram (EEG) signals is challenging because of high nonlinearity, high dimensionality, and hidden states in EEG recordings. The detection of the preictal state is difficult due to its similarity to the ictal state. We present a framework for using principal components analysis (PCA) and a classification method for improving the detection rate of epileptic classes. To unearth the nonlinearity and high dimensionality in epileptic signals, we extract principal component features using PCA on the 15 high-order spectra (HOS) features extracted from the EEG data. We evaluate eight classifiers in the framework using true positive (TP) rate and area under curve (AUC) of receiver operating characteristics (ROC). We show that a simple logistic regression model achieves the highest TP rate for class “preictal” at 97.5% and the TP rate on average at 96.8% with PCA variance percentages selected at 100%, which also achieves the most AUC at 99.5%. |
---|---|
ISSN: | 0148-5598 1573-689X |
DOI: | 10.1007/s10916-010-9633-6 |