Symmetric positive solutions of fourth order boundary value problems for an increasing homeomorphism and homomorphism on time-scales
Let T ⊂ R be a symmetric bounded time-scale, with a = min T , b = max T . We consider the following fourth order boundary value problem ϕ ( − p x Δ ∇ ) Δ ∇ ( t ) + f ( t , x ( t ) ) = 0 , t ∈ T κ 2 κ 2 , x ( a ) = x ( b ) = 0 , x Δ ∇ ( σ ( a ) ) = x Δ ∇ ( ρ ( b ) ) = 0 for a suitable function p and...
Gespeichert in:
Veröffentlicht in: | Computers & mathematics with applications (1987) 2012-02, Vol.63 (3), p.669-678 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
T
⊂
R
be a symmetric bounded time-scale, with
a
=
min
T
,
b
=
max
T
. We consider the following fourth order boundary value problem
ϕ
(
−
p
x
Δ
∇
)
Δ
∇
(
t
)
+
f
(
t
,
x
(
t
)
)
=
0
,
t
∈
T
κ
2
κ
2
,
x
(
a
)
=
x
(
b
)
=
0
,
x
Δ
∇
(
σ
(
a
)
)
=
x
Δ
∇
(
ρ
(
b
)
)
=
0
for a suitable function
p
and an increasing homeomorphism and homomorphism
ϕ
. By using the Krasnosel’skii fixed point theorem, we present sufficient conditions for the existence of at least one or two symmetric positive solutions of the above problem on time-scales. As applications, two examples are given to illustrate the main results. |
---|---|
ISSN: | 0898-1221 1873-7668 |
DOI: | 10.1016/j.camwa.2011.11.025 |