Symmetric positive solutions of fourth order boundary value problems for an increasing homeomorphism and homomorphism on time-scales

Let T ⊂ R be a symmetric bounded time-scale, with a = min T , b = max T . We consider the following fourth order boundary value problem ϕ ( − p x Δ ∇ ) Δ ∇ ( t ) + f ( t , x ( t ) ) = 0 , t ∈ T κ 2 κ 2 , x ( a ) = x ( b ) = 0 , x Δ ∇ ( σ ( a ) ) = x Δ ∇ ( ρ ( b ) ) = 0 for a suitable function p and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & mathematics with applications (1987) 2012-02, Vol.63 (3), p.669-678
Hauptverfasser: Çetin, Erbil, Topal, F. Serap
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let T ⊂ R be a symmetric bounded time-scale, with a = min T , b = max T . We consider the following fourth order boundary value problem ϕ ( − p x Δ ∇ ) Δ ∇ ( t ) + f ( t , x ( t ) ) = 0 , t ∈ T κ 2 κ 2 , x ( a ) = x ( b ) = 0 , x Δ ∇ ( σ ( a ) ) = x Δ ∇ ( ρ ( b ) ) = 0 for a suitable function p and an increasing homeomorphism and homomorphism ϕ . By using the Krasnosel’skii fixed point theorem, we present sufficient conditions for the existence of at least one or two symmetric positive solutions of the above problem on time-scales. As applications, two examples are given to illustrate the main results.
ISSN:0898-1221
1873-7668
DOI:10.1016/j.camwa.2011.11.025