Synthesis of block and end-functionalized polyesters by triflimide-catalyzed ring-opening polymerization of ε-caprolactone, 1,5-dioxepan-2-one, and rac-lactide
ABSTRACT The ring‐opening polymerization (ROP) of cyclic esters, such as ε‐caprolactone, 1,5‐dioxepan‐2‐one, and racemic lactide using the combination of 3‐phenyl‐1‐propanol as the initiator and triflimide (HNTf2) as the catalyst at room temperature with the [monomer]0/[initiator]0 ratio of 50/1 was...
Gespeichert in:
Veröffentlicht in: | Journal of polymer science. Part A, Polymer chemistry Polymer chemistry, 2013-06, Vol.51 (11), p.2455-2463 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | ABSTRACT
The ring‐opening polymerization (ROP) of cyclic esters, such as ε‐caprolactone, 1,5‐dioxepan‐2‐one, and racemic lactide using the combination of 3‐phenyl‐1‐propanol as the initiator and triflimide (HNTf2) as the catalyst at room temperature with the [monomer]0/[initiator]0 ratio of 50/1 was investigated. The polymerizations homogeneously proceeded to afford poly(ε‐caprolactone) (PCL), poly(1,5‐dioxepan‐2‐one) (PDXO), and polylactide (PLA) with controlled molecular weights and narrow polydispersity indices. The molecular weight determined from an 1H NMR analysis (PCL, Mn,NMR = 5380; PDXO, Mn,NMR = 5820; PLA, Mn,NMR = 6490) showed good agreement with the calculated values. The 1H NMR and matrix‐assisted laser desorption ionization time‐of‐flight mass spectrometry analyses strongly indicated that the obtained compounds were the desired polyesters. The kinetic measurements confirmed the controlled/living nature for the HNTf2‐catalyzed ROP of cyclic esters. A series of functional alcohols, such as propargyl alcohol, 6‐azido‐1‐hexanol, N‐(2‐hydroxyethyl)maleimide, 5‐hexen‐1‐ol, and 2‐hydroxyethyl methacrylate, successfully produced end‐functionalized polyesters. In addition, poly(ethylene glycol)‐block‐polyester, poly(δ‐valerolactone)‐block‐poly(ε‐caprolactone), and poly(ε‐caprolactone)‐block‐polylactide were synthesized using the HNTf2‐catalyzed ROP. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2455–2463
The catalytic activity of triflimide for the ring‐opening polymerization of ɛ‐caprolactone, 1,5‐dioxepan‐2‐one, and rac‐lactide is revealed. All the polymerizations proceed through a controlled/living system. End‐functionalized polyesters are produced using functional initiators, such as propargyl alcohol, 6‐azido‐1‐hexanol, N‐(2‐hydroxyethyl)maleimide, 5‐hexen‐1‐ol, and 2‐hydroxyethyl methacrylate. Block copolymerization succeeds by the use of methoxy poly(ethylene glycol) as the macroinitiator, the sequential addition of δ‐valerolactone and ɛ‐caprolactone, and the click reaction of poly(ɛ‐caprolactone) and poly(rac‐lactide). |
---|---|
ISSN: | 0887-624X 1099-0518 |
DOI: | 10.1002/pola.26631 |