HITS Can Converge Slowly, But Not Too Slowly, in Score and Rank

This article explores the fundamental question of how many iterations the celebrated HITS algorithm requires on a general graph to converge in score and, perhaps more importantly, in rank (i.e. to "get right" the order of the nodes). We prove upper and almost matching lower bounds. We also...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on discrete mathematics 2012-01, Vol.26 (3), p.1189-1209
Hauptverfasser: Peserico, Enoch, Pretto, Luca
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article explores the fundamental question of how many iterations the celebrated HITS algorithm requires on a general graph to converge in score and, perhaps more importantly, in rank (i.e. to "get right" the order of the nodes). We prove upper and almost matching lower bounds. We also extend our results to weighted graphs. [PUBLICATION ABSTRACT]
ISSN:0895-4801
1095-7146
DOI:10.1137/090762002