The Legendre wavelet method for solving fractional differential equations

► We solve fractional differential equations by wavelets. ► An operational matrix is derived. ► Initial and boundary value problems are solved. Fractional differential equations are solved using the Legendre wavelets. An operational matrix of fractional order integration is derived and is utilized t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in nonlinear science & numerical simulation 2011-11, Vol.16 (11), p.4163-4173
Hauptverfasser: ur Rehman, Mujeeb, Ali Khan, Rahmat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:► We solve fractional differential equations by wavelets. ► An operational matrix is derived. ► Initial and boundary value problems are solved. Fractional differential equations are solved using the Legendre wavelets. An operational matrix of fractional order integration is derived and is utilized to reduce the fractional differential equations to system of algebraic equations. The illustrative examples are provided to demonstrate the applicability, simplicity of the numerical scheme based on the Legendre.
ISSN:1007-5704
1878-7274
DOI:10.1016/j.cnsns.2011.01.014