RATE ALLOCATION FOR SVC TRANSMISSION IN ENERGY-CONSTRAINEDWIRELESS SENSOR NETWORKS

Due to the resource limitations, efficient multimedia transmission is still a challenging problem in Wireless Sensor Networks (WSNs). To achieve this goal, provisioning the required rate and quality of video stream along with limitations of sensor nodes should be considered. The Scalable Video Codin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of computer networks & communications 2012-01, Vol.4 (1), p.127-127
Hauptverfasser: Zavareh, Seyedeh Zahra Sadri Tabaee, Fathy, Mahmood
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Due to the resource limitations, efficient multimedia transmission is still a challenging problem in Wireless Sensor Networks (WSNs). To achieve this goal, provisioning the required rate and quality of video stream along with limitations of sensor nodes should be considered. The Scalable Video Coding (SVC) is an efficient approach to support the graceful quality reduction and scalability of multimedia application thus we adopt it to encode video streams. In this paper, both Network Utility Maximization (NUM) and utility proportional optimization for scalable multimedia transmission in WSNs are addressed. Link congestion and energy scarcity of sensor nodes are considered as the constraints in optimization problems. To depict the characteristics of these applications accurately, staircase utility function is adopted. The non-concavity of utility function leads to the non-convex problem. To deal with the non-convexity of the problem, an approximation of the utility function is used. Finally, we propose two distributed algorithm to allocate the resources properly by solving NUM and utility proportional problems in energy-constraints WSNs. The simulation results in different scenarios show the efficiency and proper rate of convergence of our proposed algorithms.
ISSN:0975-2293
0974-9322