Nonlinear Approach for Enhancement of Image Focus Volume in Shape From Focus

Mostly, shape-from-focus algorithms use local averaging using a fixed rectangle window to enhance the initial focus volume. In this linear filtering, the window size affects the accuracy of the depth map. A small window is unable to suppress the noise properly, whereas a large window oversmoothes th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2012-05, Vol.21 (5), p.2866-2873
Hauptverfasser: Mahmood, M. T., Tae-Sun Choi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2873
container_issue 5
container_start_page 2866
container_title IEEE transactions on image processing
container_volume 21
creator Mahmood, M. T.
Tae-Sun Choi
description Mostly, shape-from-focus algorithms use local averaging using a fixed rectangle window to enhance the initial focus volume. In this linear filtering, the window size affects the accuracy of the depth map. A small window is unable to suppress the noise properly, whereas a large window oversmoothes the object shape. Moreover, the use of any window size smoothes focus values uniformly. Consequently, an erroneous depth map is obtained. In this paper, we suggest the use of iterative 3-D anisotropic nonlinear diffusion filtering (ANDF) to enhance the image focus volume. In contrast to linear filtering, ANDF utilizes the local structure of the focus values to suppress the noise while preserving edges. The proposed scheme is tested using image sequences of synthetic and real objects, and results have demonstrated its effectiveness.
doi_str_mv 10.1109/TIP.2012.2186144
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671422346</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6140969</ieee_id><sourcerecordid>1008825924</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-ab1b02d01fe2887fadaa549c2c8c666ab33a3dcd7273d9c1eef4c164f6d2a39d3</originalsourceid><addsrcrecordid>eNqFkUtr3DAQgEVISdK090ChCEqhF281I1m2jiHksbAkgaS9Gq08yjrY1kZaH_Lvq2W3KeTSk4Tmm5c-xs5AzACE-fk4v5-hAJwh1BqUOmAnYBQUQig8zHdRVkUFyhyzjyk9CwGqBH3EjhHRKCHFCVvchrHvRrKRn6_XMVi34j5Efjmu7OhooHHDg-fzwT4RvwpuSvx36KeBeDfyh5Vd59cYhl3oE_vgbZ_o8_48Zb-uLh8vborF3fX84nxROFXpTWGXsBTYCvCEdV1521pbKuPQ1U5rbZdSWtm6tsJKtsYBkVcOtPK6RStNK0_Zj13dPPDLRGnTDF1y1Pd2pDClBnReGlEq_X9UiLrG0qDK6Ld36HOY4pgX2VKoDKAuMyV2lIshpUi-WcdusPE1Q81WSpOlNFspzV5KTvm6LzwtB2rfEv5ayMD3PWCTs72P-eu79I8r84R1KTP3Zcd1RPQWzj2E0Ub-AXNqmvo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1002491265</pqid></control><display><type>article</type><title>Nonlinear Approach for Enhancement of Image Focus Volume in Shape From Focus</title><source>IEEE Electronic Library (IEL)</source><creator>Mahmood, M. T. ; Tae-Sun Choi</creator><creatorcontrib>Mahmood, M. T. ; Tae-Sun Choi</creatorcontrib><description>Mostly, shape-from-focus algorithms use local averaging using a fixed rectangle window to enhance the initial focus volume. In this linear filtering, the window size affects the accuracy of the depth map. A small window is unable to suppress the noise properly, whereas a large window oversmoothes the object shape. Moreover, the use of any window size smoothes focus values uniformly. Consequently, an erroneous depth map is obtained. In this paper, we suggest the use of iterative 3-D anisotropic nonlinear diffusion filtering (ANDF) to enhance the image focus volume. In contrast to linear filtering, ANDF utilizes the local structure of the focus values to suppress the noise while preserving edges. The proposed scheme is tested using image sequences of synthetic and real objects, and results have demonstrated its effectiveness.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2012.2186144</identifier><identifier>PMID: 22294030</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Anisotropic nonlinear diffusion filtering (ANDF) ; Applied sciences ; depth map ; Detection, estimation, filtering, equalization, prediction ; Diffusion ; Exact sciences and technology ; Filtering ; Filtration ; focus measure ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image processing ; Image sequences ; Information, signal and communications theory ; Maximum likelihood detection ; Noise ; Nonlinear Dynamics ; Nonlinearity ; Rectangles ; Reproducibility of Results ; Sensitivity and Specificity ; Shape ; shape from focus (SFF) ; Signal and communications theory ; Signal processing ; Signal, noise ; Smoothing methods ; Telecommunications and information theory ; Three dimensional ; Three dimensional displays</subject><ispartof>IEEE transactions on image processing, 2012-05, Vol.21 (5), p.2866-2873</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-ab1b02d01fe2887fadaa549c2c8c666ab33a3dcd7273d9c1eef4c164f6d2a39d3</citedby><cites>FETCH-LOGICAL-c476t-ab1b02d01fe2887fadaa549c2c8c666ab33a3dcd7273d9c1eef4c164f6d2a39d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6140969$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6140969$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25825853$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22294030$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mahmood, M. T.</creatorcontrib><creatorcontrib>Tae-Sun Choi</creatorcontrib><title>Nonlinear Approach for Enhancement of Image Focus Volume in Shape From Focus</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Mostly, shape-from-focus algorithms use local averaging using a fixed rectangle window to enhance the initial focus volume. In this linear filtering, the window size affects the accuracy of the depth map. A small window is unable to suppress the noise properly, whereas a large window oversmoothes the object shape. Moreover, the use of any window size smoothes focus values uniformly. Consequently, an erroneous depth map is obtained. In this paper, we suggest the use of iterative 3-D anisotropic nonlinear diffusion filtering (ANDF) to enhance the image focus volume. In contrast to linear filtering, ANDF utilizes the local structure of the focus values to suppress the noise while preserving edges. The proposed scheme is tested using image sequences of synthetic and real objects, and results have demonstrated its effectiveness.</description><subject>Algorithms</subject><subject>Anisotropic nonlinear diffusion filtering (ANDF)</subject><subject>Applied sciences</subject><subject>depth map</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Diffusion</subject><subject>Exact sciences and technology</subject><subject>Filtering</subject><subject>Filtration</subject><subject>focus measure</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image processing</subject><subject>Image sequences</subject><subject>Information, signal and communications theory</subject><subject>Maximum likelihood detection</subject><subject>Noise</subject><subject>Nonlinear Dynamics</subject><subject>Nonlinearity</subject><subject>Rectangles</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Shape</subject><subject>shape from focus (SFF)</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal, noise</subject><subject>Smoothing methods</subject><subject>Telecommunications and information theory</subject><subject>Three dimensional</subject><subject>Three dimensional displays</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqFkUtr3DAQgEVISdK090ChCEqhF281I1m2jiHksbAkgaS9Gq08yjrY1kZaH_Lvq2W3KeTSk4Tmm5c-xs5AzACE-fk4v5-hAJwh1BqUOmAnYBQUQig8zHdRVkUFyhyzjyk9CwGqBH3EjhHRKCHFCVvchrHvRrKRn6_XMVi34j5Efjmu7OhooHHDg-fzwT4RvwpuSvx36KeBeDfyh5Vd59cYhl3oE_vgbZ_o8_48Zb-uLh8vborF3fX84nxROFXpTWGXsBTYCvCEdV1521pbKuPQ1U5rbZdSWtm6tsJKtsYBkVcOtPK6RStNK0_Zj13dPPDLRGnTDF1y1Pd2pDClBnReGlEq_X9UiLrG0qDK6Ld36HOY4pgX2VKoDKAuMyV2lIshpUi-WcdusPE1Q81WSpOlNFspzV5KTvm6LzwtB2rfEv5ayMD3PWCTs72P-eu79I8r84R1KTP3Zcd1RPQWzj2E0Ub-AXNqmvo</recordid><startdate>20120501</startdate><enddate>20120501</enddate><creator>Mahmood, M. T.</creator><creator>Tae-Sun Choi</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20120501</creationdate><title>Nonlinear Approach for Enhancement of Image Focus Volume in Shape From Focus</title><author>Mahmood, M. T. ; Tae-Sun Choi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-ab1b02d01fe2887fadaa549c2c8c666ab33a3dcd7273d9c1eef4c164f6d2a39d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Anisotropic nonlinear diffusion filtering (ANDF)</topic><topic>Applied sciences</topic><topic>depth map</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Diffusion</topic><topic>Exact sciences and technology</topic><topic>Filtering</topic><topic>Filtration</topic><topic>focus measure</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image processing</topic><topic>Image sequences</topic><topic>Information, signal and communications theory</topic><topic>Maximum likelihood detection</topic><topic>Noise</topic><topic>Nonlinear Dynamics</topic><topic>Nonlinearity</topic><topic>Rectangles</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Shape</topic><topic>shape from focus (SFF)</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal, noise</topic><topic>Smoothing methods</topic><topic>Telecommunications and information theory</topic><topic>Three dimensional</topic><topic>Three dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahmood, M. T.</creatorcontrib><creatorcontrib>Tae-Sun Choi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mahmood, M. T.</au><au>Tae-Sun Choi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear Approach for Enhancement of Image Focus Volume in Shape From Focus</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2012-05-01</date><risdate>2012</risdate><volume>21</volume><issue>5</issue><spage>2866</spage><epage>2873</epage><pages>2866-2873</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Mostly, shape-from-focus algorithms use local averaging using a fixed rectangle window to enhance the initial focus volume. In this linear filtering, the window size affects the accuracy of the depth map. A small window is unable to suppress the noise properly, whereas a large window oversmoothes the object shape. Moreover, the use of any window size smoothes focus values uniformly. Consequently, an erroneous depth map is obtained. In this paper, we suggest the use of iterative 3-D anisotropic nonlinear diffusion filtering (ANDF) to enhance the image focus volume. In contrast to linear filtering, ANDF utilizes the local structure of the focus values to suppress the noise while preserving edges. The proposed scheme is tested using image sequences of synthetic and real objects, and results have demonstrated its effectiveness.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>22294030</pmid><doi>10.1109/TIP.2012.2186144</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2012-05, Vol.21 (5), p.2866-2873
issn 1057-7149
1941-0042
language eng
recordid cdi_proquest_miscellaneous_1671422346
source IEEE Electronic Library (IEL)
subjects Algorithms
Anisotropic nonlinear diffusion filtering (ANDF)
Applied sciences
depth map
Detection, estimation, filtering, equalization, prediction
Diffusion
Exact sciences and technology
Filtering
Filtration
focus measure
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image processing
Image sequences
Information, signal and communications theory
Maximum likelihood detection
Noise
Nonlinear Dynamics
Nonlinearity
Rectangles
Reproducibility of Results
Sensitivity and Specificity
Shape
shape from focus (SFF)
Signal and communications theory
Signal processing
Signal, noise
Smoothing methods
Telecommunications and information theory
Three dimensional
Three dimensional displays
title Nonlinear Approach for Enhancement of Image Focus Volume in Shape From Focus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T09%3A02%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20Approach%20for%20Enhancement%20of%20Image%20Focus%20Volume%20in%20Shape%20From%20Focus&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Mahmood,%20M.%20T.&rft.date=2012-05-01&rft.volume=21&rft.issue=5&rft.spage=2866&rft.epage=2873&rft.pages=2866-2873&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2012.2186144&rft_dat=%3Cproquest_RIE%3E1008825924%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1002491265&rft_id=info:pmid/22294030&rft_ieee_id=6140969&rfr_iscdi=true