Nonlinear Approach for Enhancement of Image Focus Volume in Shape From Focus

Mostly, shape-from-focus algorithms use local averaging using a fixed rectangle window to enhance the initial focus volume. In this linear filtering, the window size affects the accuracy of the depth map. A small window is unable to suppress the noise properly, whereas a large window oversmoothes th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2012-05, Vol.21 (5), p.2866-2873
Hauptverfasser: Mahmood, M. T., Tae-Sun Choi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mostly, shape-from-focus algorithms use local averaging using a fixed rectangle window to enhance the initial focus volume. In this linear filtering, the window size affects the accuracy of the depth map. A small window is unable to suppress the noise properly, whereas a large window oversmoothes the object shape. Moreover, the use of any window size smoothes focus values uniformly. Consequently, an erroneous depth map is obtained. In this paper, we suggest the use of iterative 3-D anisotropic nonlinear diffusion filtering (ANDF) to enhance the image focus volume. In contrast to linear filtering, ANDF utilizes the local structure of the focus values to suppress the noise while preserving edges. The proposed scheme is tested using image sequences of synthetic and real objects, and results have demonstrated its effectiveness.
ISSN:1057-7149
1941-0042
DOI:10.1109/TIP.2012.2186144