Optimal design of multi-step stamping tools based on response surface method

This paper describes a new numerical method for the design of multi-step stamping tools, in which the optimization approach is based on the Response Surface Method (RSM) with Kriging interpolation as well as the Sequential Quadratic Programming (SQP) algorithm. The present work attempts to provide a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Simulation modelling practice and theory 2012-05, Vol.24, p.1-14
Hauptverfasser: Azaouzi, M., Lebaal, N., Rauchs, G., Belouettar, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper describes a new numerical method for the design of multi-step stamping tools, in which the optimization approach is based on the Response Surface Method (RSM) with Kriging interpolation as well as the Sequential Quadratic Programming (SQP) algorithm. The present work attempts to provide a reliable methodology for the optimum design of the forming tools in order to produce a desired part by multi-step stamping within a severe tolerance (0.1mm). The numerical method has been proposed to reduce the number of forming steps and therefore increasing the process productivity. To reach this goal, an integrated optimization approach, using the commercial finite element code ABAQUS© together with an optimization algorithm was developed. The optimization algorithm consists in constructing an explicit form of the objective function according to the design variables. To search the global optimum of the objective function, the SQP algorithm has been used. A thin metallic part formed by manual press and without blank-holder has been considered, to demonstrate the effectiveness of the optimization approach to get the optimal tools shape in a few iterations.
ISSN:1569-190X
1878-1462
DOI:10.1016/j.simpat.2012.01.006