A Binary Tree Structured Terrain Classifier for Pol-SAR Images
In this letter, a new terrain type classifier is proposed for polarimetric Synthetic Aperture Radar (Pol-SAR) images. This classifier uses the binary tree structure. The homogenous and inhomogeneous areas are first classified by the support vector machine (SVM) classifier based on the texture featur...
Gespeichert in:
Veröffentlicht in: | IEICE Transactions on Communications 2011/05/01, Vol.E94.B(5), pp.1515-1518 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this letter, a new terrain type classifier is proposed for polarimetric Synthetic Aperture Radar (Pol-SAR) images. This classifier uses the binary tree structure. The homogenous and inhomogeneous areas are first classified by the support vector machine (SVM) classifier based on the texture features extracted from the span image. Then the homogenous and inhomogeneous areas are, respectively, classified by the traditional Wishart classifier and the SVM classifier based on the texture features. Using a NASA/JPL AIRSAR image, the authors achieve the classification accuracy of up to 98%, demonstrating the effectiveness of the proposed method. |
---|---|
ISSN: | 0916-8516 1745-1345 1745-1345 |
DOI: | 10.1587/transcom.E94.B.1515 |