Diamond NV centers for quantum computing and quantum networks

The exotic features of quantum mechanics have the potential to revolutionize information technologies. Using superposition and entanglement, a quantum processor could efficiently tackle problems inaccessible to current-day computers. Nonlocal correlations may be exploited for intrinsically secure co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:MRS bulletin 2013-02, Vol.38 (2), p.134-138
Hauptverfasser: Childress, Lilian, Hanson, Ronald
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The exotic features of quantum mechanics have the potential to revolutionize information technologies. Using superposition and entanglement, a quantum processor could efficiently tackle problems inaccessible to current-day computers. Nonlocal correlations may be exploited for intrinsically secure communication across the globe. Finding and controlling a physical system suitable for fulfilling these promises is one of the greatest challenges of our time. The nitrogen-vacancy (NV) center in diamond has recently emerged as one of the leading candidates for such quantum information technologies thanks to its combination of atom-like properties and solid-state host environment. We review the remarkable progress made in the past years in controlling electrons, atomic nuclei, and light at the single-quantum level in diamond. We also discuss prospects and challenges for the use of NV centers in future quantum technologies.
ISSN:0883-7694
1938-1425
DOI:10.1557/mrs.2013.20