Cutting forces related with lattice orientations of graphene using an atomic force microscopy based nanorobot

The relationship between cutting forces and lattice orientations of monolayer graphene is investigated by using an atomic force microscopy (AFM) based nanorobot. In the beginning, the atomic resolution image of the graphene lattice is obtained by using an AFM. Then, graphene cutting experiments are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2012-11, Vol.101 (21)
Hauptverfasser: Zhang, Yu, Gao, Yang, Liu, Lianqing, Xi, Ning, Wang, Yuechao, Ma, Laipeng, Dong, Zaili, Wejinya, Uchechukwu C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The relationship between cutting forces and lattice orientations of monolayer graphene is investigated by using an atomic force microscopy (AFM) based nanorobot. In the beginning, the atomic resolution image of the graphene lattice is obtained by using an AFM. Then, graphene cutting experiments are performed with sample rotation method, which gets rid of the tip effect completely. The experimental results show that the cutting force along the armchair orientation is larger than the force along the zigzag orientation, and the cutting forces are almost identical every 60 degree , which corresponds well with the 60 degree symmetry in graphene honeycomb lattice structure. By using Poisson analysis method, the single cutting force along zigzag orientation is 3.9 nN, and the force along armchair is 20.5 nN. This work lays the experimental foundation to build a close-loop fabrication strategy with real-time force as a feedback sensor to control the cutting direction.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.4767230