Surface studies of halloysite nanotubes by XPS and ToF-SIMS

This report provides detailed experimental results of thermal and surface characterization on untreated and surface‐treated halloysite nanotubes (HNTs) obtained from two geographic areas. Surface characterization techniques, including XPS and time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surface and interface analysis 2011-04, Vol.43 (4), p.795-802
Hauptverfasser: Ng, Kai-Mo, Lau, Yiu-Ting R., Chan, Chi-Ming, Weng, Lu-Tao, Wu, Jingshen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This report provides detailed experimental results of thermal and surface characterization on untreated and surface‐treated halloysite nanotubes (HNTs) obtained from two geographic areas. Surface characterization techniques, including XPS and time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) were used. ToF‐SIMS surface analysis experiments were performed with both atomic and cluster ion beams. Higher ion yields and more high‐mass ions were obtained with the cluster ion beams. Static ToF‐SIMS spectra were analyzed with principal component analysis (PCA). Morphological diversities were observed in the samples although they mainly contained tubular structures. Thermogravimetric data indicated that aqueous hydrogen peroxide solution could remove inorganic salt impurities, such as alkali metal salts. The amount of grafting of benzalkonium chloride of HNT surface was determined by thermogravimetic analysis. PCA of ToF‐SIMS spectra could distinguish the samples mined from different geographical locations as well as among surface‐treated and untreated samples. Copyright © 2010 John Wiley & Sons, Ltd.
ISSN:0142-2421
1096-9918
1096-9918
DOI:10.1002/sia.3627