DFT modal analysis of spectral element methods for the 2D elastic wave equation

The DFT modal analysis is a dispersion analysis technique that transforms the equations of a numerical scheme to the discrete Fourier transform domain sampled in the mesh nodes. This technique provides a natural matching of exact and approximate modes of propagation. We extend this technique to spec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2010-07, Vol.234 (6), p.1717-1724
Hauptverfasser: Oliveira, S.P., Seriani, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The DFT modal analysis is a dispersion analysis technique that transforms the equations of a numerical scheme to the discrete Fourier transform domain sampled in the mesh nodes. This technique provides a natural matching of exact and approximate modes of propagation. We extend this technique to spectral element methods for the 2D isotropic elastic wave equation, by using a Rayleigh quotient approximation of the eigenvalue problem that characterizes the dispersion relation, taking full advantage of the tensor product representation of the spectral element matrices. Numerical experiments illustrate the dependence of dispersion errors on the grid resolution, polynomial degree, and discretization in time. We consider spectral element methods with Chebyshev and Legendre collocation points.
ISSN:0377-0427
1879-1778
DOI:10.1016/j.cam.2009.08.020