A new 3-D conformal PEC FDTD scheme with user-defined geometric precision and derived stability criterion

A new conformal finite-difference time-domain (CFDTD) updating scheme for metallic surfaces nonaligned in the grid is presented in this paper. In contrast to existing conformal models, the new model can be formulated with the original Yee FDTD update equation. Therefore, the proposed scheme can be e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on antennas and propagation 2006-06, Vol.54 (6), p.1843-1849
Hauptverfasser: Benkler, S., Chavannes, N., Kuster, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new conformal finite-difference time-domain (CFDTD) updating scheme for metallic surfaces nonaligned in the grid is presented in this paper. In contrast to existing conformal models, the new model can be formulated with the original Yee FDTD update equation. Therefore, the proposed scheme can be easily added in standard FDTD codes even if the codes are already parallelized or hardware-accelerated. In addition, based on the commonly used conventional stability criterion, a derivation of the stability is presented and based on the conformal geometric information, a time step reduction formula is presented. The time step reduction is used as a user-defined parameter to tradeoff speed versus accuracy. The achievable geometric precision is optimized to a given time step. Therefore, even with the conventional time step (no reduction) the presented scheme profits from the conformal discretization. To show the performance and the robustness of the proposed scheme canonical validations and two real world applications were investigated. A broadband low profile (circular) antenna was successfully simulated showing the benefit of the conformal FDTD method compared to the conventional scheme. Furthermore, a CAD based mobile phone was conformally discretized and successfully simulated showing that the proposed scheme is highly suited for the simulation of advanced engineering problems.
ISSN:0018-926X
1558-2221
DOI:10.1109/TAP.2006.875909