An OpenCL-based feature matcher

Nowadays visual search is one of the most active branches of computer vision. It relies on finding invariant points inside images, describing them into features and then matching these features against a reference database to identify objects in the scene or the entire photo (environment). In this p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Signal processing. Image communication 2013-04, Vol.28 (4), p.345-350
Hauptverfasser: Condello, Giovanni, Pasteris, Paolo, Pau, Danilo, Sami, Mariagiovanna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nowadays visual search is one of the most active branches of computer vision. It relies on finding invariant points inside images, describing them into features and then matching these features against a reference database to identify objects in the scene or the entire photo (environment). In this paper, we discuss an approach to feature matching that exploits the capabilities of modern GPUs to speed up the aforementioned and that keeps low the number of false matches. ► We describe an invariant features matcher based on GPU computing. ► The matcher employees a naive brute-force search strategy. ► We compare its performances against modern approximated matching techniques. ► An approximated features matcher on the GPU may lead to lower performances. ► Our matcher outperforms in quality and speed every CPU-based matcher to date.
ISSN:0923-5965
1879-2677
DOI:10.1016/j.image.2012.06.002