Subspace Gap Residuals for Rayleigh–Ritz Approximations
Large-scale eigenvalue and singular value computations are usually based on extracting information from a compression of the matrix to suitably chosen low dimensional subspaces. This paper introduces new a posteriori relative error bounds based on a residual expressed using the largest principal ang...
Gespeichert in:
Veröffentlicht in: | SIAM journal on matrix analysis and applications 2009-01, Vol.31 (1), p.54-67 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Large-scale eigenvalue and singular value computations are usually based on extracting information from a compression of the matrix to suitably chosen low dimensional subspaces. This paper introduces new a posteriori relative error bounds based on a residual expressed using the largest principal angle (gap) between relevant subspaces. The eigenvector approximations are estimated using subspace gaps and relative separation of the eigenvalues. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0895-4798 1095-7162 |
DOI: | 10.1137/070689425 |