Calcite Cements in Burrows and Their Influence on Reservoir Property of the Donghe Sandstone, Tarim Basin, China
Abundant burrows of Skolithos linearis, Palaeophycus tubularis, and Taenidium barretti are preserved in the Upper Devonian Donghe sandstone of Tarim basin, China. They are commonly highlighted in core by the color of the burrow fill in contrast to the surrounding matrix and have dif-ferent textures...
Gespeichert in:
Veröffentlicht in: | Journal of earth science (Wuhan, China) China), 2012-04, Vol.23 (2), p.129-141 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abundant burrows of Skolithos linearis, Palaeophycus tubularis, and Taenidium barretti are preserved in the Upper Devonian Donghe sandstone of Tarim basin, China. They are commonly highlighted in core by the color of the burrow fill in contrast to the surrounding matrix and have dif-ferent textures and fabrics from the matrix. There are three kinds of calcite cements in burrows, microcrystalline-crystalline calcite cement, mosaic calcite cement, and ferroan calcite cement. Microcrystalline-crystalline calcite cement is widely distributed in the lower part of the Donghe sand-stone, but it is rare in burrows filling. It displays a globule structure under burial cementation and sel-dom replaces the quartz grains in shallow burial depth stage. Mosaiccalcite cement is widespread in the Donghe sansdtone reservoir of North Tarim basin. It shows chrysoidine, orange and bright orange lu-minescence, and intensely replaces the quartz grains, forming in early diagenetic and shallow burial depth stage. Ferroan calcite is asymmetrically distributed in the Donghe sandstone reservoir of Central Tarim basin. It fills the remanent pores in the shape of mosaic and replaces the quartz grains, matrix, and early calcite cement, forming in late diagenetic and deep burial depth stage. The burrows filled with white calcite cements have low oil saturation or may be oil-stained. In contrast, there is high oil saturation in the sandstone reservoir where the bioturbation is sparse or not present. With increased bioturbation, the porosity, permeability, and oil saturation decrease; thus, bioturbation intensity and reservoir property appear to be negatively correlated. |
---|---|
ISSN: | 1674-487X 1867-111X |
DOI: | 10.1007/s12583-012-0238-5 |