SPECTRAL ANALYSIS OF SADDLE POINT MATRICES WITH INDEFINITE LEADING BLOCKS

We provide eigenvalue intervals for symmetric saddle point and regularized saddle point matrices in the case where the (1,1) block may be indefinite. These generalize known results for the definite (1,1) case. We also study the spectral properties of the equivalent augmented formulation, which is an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on matrix analysis and applications 2009-01, Vol.31 (3), p.1152-1171
Hauptverfasser: GOULD, N. I. M, SIMONCINI, V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We provide eigenvalue intervals for symmetric saddle point and regularized saddle point matrices in the case where the (1,1) block may be indefinite. These generalize known results for the definite (1,1) case. We also study the spectral properties of the equivalent augmented formulation, which is an alternative to explicitly dealing with the indefinite (1,1) block. Such an analysis may be used to assess the convergence of suitable Krylov subspace methods. We conclude with spectral analyses of the effects of common block-diagonal preconditioners. [PUBLICATION ABSTRACT]
ISSN:0895-4798
1095-7162
DOI:10.1137/080733413