Some Sufficient Conditions for Tunnel Numbers of Connected Sum of Two Knots Not to Go Down

In this paper, we show the following result: Let Ki be a knot in a closed orientable 3- manifold Mi such that (Mi,Ki) is not homeomorphic to (S^2 × S^1,x0 × S^1), i = 1,2. Suppose that the Euler Characteristic of any meridional essential surface in each knot complement E(Ki) is less than the differe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica Sinica. English series 2011-11, Vol.27 (11), p.2229-2244
Hauptverfasser: Yang, Guo Qiu, Lei, Feng Chun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we show the following result: Let Ki be a knot in a closed orientable 3- manifold Mi such that (Mi,Ki) is not homeomorphic to (S^2 × S^1,x0 × S^1), i = 1,2. Suppose that the Euler Characteristic of any meridional essential surface in each knot complement E(Ki) is less than the difference of one and twice of the tunnel number of Ki. Then the tunnel number of their connected sum will not go down. If in addition that the distance of any minimal Heegaard splitting of each knot complement is strictly more than 2, then the tunnel number of their connected sum is super additive. We further show that if the distance of a Heegaard splitting of each knot complement is strictly bigger than twice the tunnel number of the knot (twice the sum of the tunnel number of the knot and one, respectively), then the tunnel number of connected sum of two such knots is additive (super additive, respectively).
ISSN:1439-8516
1439-7617
DOI:10.1007/s10114-011-9021-2