A Data Mining Approach for Compressed Medical Image Retrieval

The digital medical images are stored in large databases for easy accessibility and Content based image retrieval (CBIR) is used to retrieve diagnostic cases similar to the query medical image. Image compression condense the amount of data required to represent an image, it reduces the storage and t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of computer applications 2012-01, Vol.52 (5), p.26-30
Hauptverfasser: Enireddy, Vamsidhar, Reddi, Kiran Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The digital medical images are stored in large databases for easy accessibility and Content based image retrieval (CBIR) is used to retrieve diagnostic cases similar to the query medical image. Image compression condense the amount of data required to represent an image, it reduces the storage and transmission requirements. The medical image retrieval problem for compressed images is studied in this paper. The proposed method integrates image retrieval to retrieve diagnostic cases similar to the query medical image and image compression techniques to minimize the bandwidth utilization. Haar wavelet is used for image compression without losses. Edge and texture features are extracted from the medical compressed medical images using Sobel edge detector and Gabor transforms respectively. The classification accuracy of retrieval is evaluated using Naïve Bayes and Support Vector Machine.
ISSN:0975-8887
0975-8887
DOI:10.5120/8199-1591