Robustness of the Filtered-X LMS Algorithm- Part II: Robustness Enhancement by Minimal Regularization for Norm Bounded Uncertainty

The relationship between the regularization methods proposed in the literature to increase the robustness of the filtered-X LMS (FXLMS) algorithm is discussed. It is shown that the existing methods are special cases of a more general robust FXLMS algorithm in which particular filters determine the t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2007-08, Vol.55 (8), p.4038-4047
Hauptverfasser: Fraanje, R.., Elliott, S.J., Verhaegen, M..
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4047
container_issue 8
container_start_page 4038
container_title IEEE transactions on signal processing
container_volume 55
creator Fraanje, R..
Elliott, S.J.
Verhaegen, M..
description The relationship between the regularization methods proposed in the literature to increase the robustness of the filtered-X LMS (FXLMS) algorithm is discussed. It is shown that the existing methods are special cases of a more general robust FXLMS algorithm in which particular filters determine the type of regularization. Based on the analysis by Fraanje, Verhaegen, and Elliott [ldquorobustness of the filtered-X LMS algorithm - part I: necessary conditions for convergence and the asymptotic pseudospectrum of Toeplitz Matricesrdquo of this issue], regularization filters are designed that guarantee that the strictly positive real conditions for asymptotic convergence or noncritical behavior are just satisfied for all uncertain systems contained in a particular norm bounded set.
doi_str_mv 10.1109/TSP.2007.896086
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671385121</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4276970</ieee_id><sourcerecordid>1671385121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-8f37cd52bb462d5fa6f77b24631e0a368829816b99224010477c6fa0e0cdc7bd3</originalsourceid><addsrcrecordid>eNp9kc1rFTEUxYMoWJ-uXbgJgqWbec3X5MNdLa0-eNXSD-guZGaSvpSZpCaZxXPpX27KK1q6cHUv3N85cM8B4D1GS4yROry6PF8ShMRSKo4kfwH2sGK4QUzwl3VHLW1aKW5egzc53yGEGVN8D_y-iN2cS7A5w-hg2Vh46sdikx2aG7g-u4RH421MvmymBp6bVOBq9Rk-EZ2EjQm9nWwosNvCMx_8ZEZ4YW_n0ST_yxQfA3Qxwe8xTfBLnMNgB3hdNakYH8r2LXjlzJjtu8e5ANenJ1fH35r1j6-r46N101NJSiMdFf3Qkq5jnAytM9wJ0RHGKbbIUC4lURLzTilCGML1b9FzZ5BF_dCLbqALsL_zvU_x52xz0ZPPvR1HE2ycs6ZMYYpqTgtw8F8Qc4GpbDHBFf34DL2Lcwr1DS05a6mQSFXocAf1KeacrNP3qYaUthoj_dCdrt3ph-70rruq-PRoa3JvRpdqxD7_k0nVYiZo5T7sOG-t_XtmRHAlEP0DMd2hyA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864537809</pqid></control><display><type>article</type><title>Robustness of the Filtered-X LMS Algorithm- Part II: Robustness Enhancement by Minimal Regularization for Norm Bounded Uncertainty</title><source>IEEE Electronic Library Online</source><creator>Fraanje, R.. ; Elliott, S.J. ; Verhaegen, M..</creator><creatorcontrib>Fraanje, R.. ; Elliott, S.J. ; Verhaegen, M..</creatorcontrib><description>The relationship between the regularization methods proposed in the literature to increase the robustness of the filtered-X LMS (FXLMS) algorithm is discussed. It is shown that the existing methods are special cases of a more general robust FXLMS algorithm in which particular filters determine the type of regularization. Based on the analysis by Fraanje, Verhaegen, and Elliott [ldquorobustness of the filtered-X LMS algorithm - part I: necessary conditions for convergence and the asymptotic pseudospectrum of Toeplitz Matricesrdquo of this issue], regularization filters are designed that guarantee that the strictly positive real conditions for asymptotic convergence or noncritical behavior are just satisfied for all uncertain systems contained in a particular norm bounded set.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2007.896086</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Asymptotic properties ; Convergence ; Cost function ; Effort weighting ; Error correction ; Exact sciences and technology ; filtered-x LMS (FXLMS) ; Filters ; Frequency ; Information, signal and communications theory ; leaky ; Least squares approximation ; Miscellaneous ; model uncertainty ; Norms ; output weighting ; Regularization ; Robust control ; Robustness ; Signal processing ; Telecommunications and information theory ; Uncertainty ; Weight control</subject><ispartof>IEEE transactions on signal processing, 2007-08, Vol.55 (8), p.4038-4047</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-8f37cd52bb462d5fa6f77b24631e0a368829816b99224010477c6fa0e0cdc7bd3</citedby><cites>FETCH-LOGICAL-c382t-8f37cd52bb462d5fa6f77b24631e0a368829816b99224010477c6fa0e0cdc7bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4276970$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4276970$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18951473$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Fraanje, R..</creatorcontrib><creatorcontrib>Elliott, S.J.</creatorcontrib><creatorcontrib>Verhaegen, M..</creatorcontrib><title>Robustness of the Filtered-X LMS Algorithm- Part II: Robustness Enhancement by Minimal Regularization for Norm Bounded Uncertainty</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>The relationship between the regularization methods proposed in the literature to increase the robustness of the filtered-X LMS (FXLMS) algorithm is discussed. It is shown that the existing methods are special cases of a more general robust FXLMS algorithm in which particular filters determine the type of regularization. Based on the analysis by Fraanje, Verhaegen, and Elliott [ldquorobustness of the filtered-X LMS algorithm - part I: necessary conditions for convergence and the asymptotic pseudospectrum of Toeplitz Matricesrdquo of this issue], regularization filters are designed that guarantee that the strictly positive real conditions for asymptotic convergence or noncritical behavior are just satisfied for all uncertain systems contained in a particular norm bounded set.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Asymptotic properties</subject><subject>Convergence</subject><subject>Cost function</subject><subject>Effort weighting</subject><subject>Error correction</subject><subject>Exact sciences and technology</subject><subject>filtered-x LMS (FXLMS)</subject><subject>Filters</subject><subject>Frequency</subject><subject>Information, signal and communications theory</subject><subject>leaky</subject><subject>Least squares approximation</subject><subject>Miscellaneous</subject><subject>model uncertainty</subject><subject>Norms</subject><subject>output weighting</subject><subject>Regularization</subject><subject>Robust control</subject><subject>Robustness</subject><subject>Signal processing</subject><subject>Telecommunications and information theory</subject><subject>Uncertainty</subject><subject>Weight control</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kc1rFTEUxYMoWJ-uXbgJgqWbec3X5MNdLa0-eNXSD-guZGaSvpSZpCaZxXPpX27KK1q6cHUv3N85cM8B4D1GS4yROry6PF8ShMRSKo4kfwH2sGK4QUzwl3VHLW1aKW5egzc53yGEGVN8D_y-iN2cS7A5w-hg2Vh46sdikx2aG7g-u4RH421MvmymBp6bVOBq9Rk-EZ2EjQm9nWwosNvCMx_8ZEZ4YW_n0ST_yxQfA3Qxwe8xTfBLnMNgB3hdNakYH8r2LXjlzJjtu8e5ANenJ1fH35r1j6-r46N101NJSiMdFf3Qkq5jnAytM9wJ0RHGKbbIUC4lURLzTilCGML1b9FzZ5BF_dCLbqALsL_zvU_x52xz0ZPPvR1HE2ycs6ZMYYpqTgtw8F8Qc4GpbDHBFf34DL2Lcwr1DS05a6mQSFXocAf1KeacrNP3qYaUthoj_dCdrt3ph-70rruq-PRoa3JvRpdqxD7_k0nVYiZo5T7sOG-t_XtmRHAlEP0DMd2hyA</recordid><startdate>20070801</startdate><enddate>20070801</enddate><creator>Fraanje, R..</creator><creator>Elliott, S.J.</creator><creator>Verhaegen, M..</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20070801</creationdate><title>Robustness of the Filtered-X LMS Algorithm- Part II: Robustness Enhancement by Minimal Regularization for Norm Bounded Uncertainty</title><author>Fraanje, R.. ; Elliott, S.J. ; Verhaegen, M..</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-8f37cd52bb462d5fa6f77b24631e0a368829816b99224010477c6fa0e0cdc7bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Asymptotic properties</topic><topic>Convergence</topic><topic>Cost function</topic><topic>Effort weighting</topic><topic>Error correction</topic><topic>Exact sciences and technology</topic><topic>filtered-x LMS (FXLMS)</topic><topic>Filters</topic><topic>Frequency</topic><topic>Information, signal and communications theory</topic><topic>leaky</topic><topic>Least squares approximation</topic><topic>Miscellaneous</topic><topic>model uncertainty</topic><topic>Norms</topic><topic>output weighting</topic><topic>Regularization</topic><topic>Robust control</topic><topic>Robustness</topic><topic>Signal processing</topic><topic>Telecommunications and information theory</topic><topic>Uncertainty</topic><topic>Weight control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fraanje, R..</creatorcontrib><creatorcontrib>Elliott, S.J.</creatorcontrib><creatorcontrib>Verhaegen, M..</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fraanje, R..</au><au>Elliott, S.J.</au><au>Verhaegen, M..</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robustness of the Filtered-X LMS Algorithm- Part II: Robustness Enhancement by Minimal Regularization for Norm Bounded Uncertainty</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2007-08-01</date><risdate>2007</risdate><volume>55</volume><issue>8</issue><spage>4038</spage><epage>4047</epage><pages>4038-4047</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>The relationship between the regularization methods proposed in the literature to increase the robustness of the filtered-X LMS (FXLMS) algorithm is discussed. It is shown that the existing methods are special cases of a more general robust FXLMS algorithm in which particular filters determine the type of regularization. Based on the analysis by Fraanje, Verhaegen, and Elliott [ldquorobustness of the filtered-X LMS algorithm - part I: necessary conditions for convergence and the asymptotic pseudospectrum of Toeplitz Matricesrdquo of this issue], regularization filters are designed that guarantee that the strictly positive real conditions for asymptotic convergence or noncritical behavior are just satisfied for all uncertain systems contained in a particular norm bounded set.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2007.896086</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2007-08, Vol.55 (8), p.4038-4047
issn 1053-587X
1941-0476
language eng
recordid cdi_proquest_miscellaneous_1671385121
source IEEE Electronic Library Online
subjects Algorithms
Applied sciences
Asymptotic properties
Convergence
Cost function
Effort weighting
Error correction
Exact sciences and technology
filtered-x LMS (FXLMS)
Filters
Frequency
Information, signal and communications theory
leaky
Least squares approximation
Miscellaneous
model uncertainty
Norms
output weighting
Regularization
Robust control
Robustness
Signal processing
Telecommunications and information theory
Uncertainty
Weight control
title Robustness of the Filtered-X LMS Algorithm- Part II: Robustness Enhancement by Minimal Regularization for Norm Bounded Uncertainty
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T08%3A41%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robustness%20of%20the%20Filtered-X%20LMS%20Algorithm-%20Part%20II:%20Robustness%20Enhancement%20by%20Minimal%20Regularization%20for%20Norm%20Bounded%20Uncertainty&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Fraanje,%20R..&rft.date=2007-08-01&rft.volume=55&rft.issue=8&rft.spage=4038&rft.epage=4047&rft.pages=4038-4047&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2007.896086&rft_dat=%3Cproquest_RIE%3E1671385121%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=864537809&rft_id=info:pmid/&rft_ieee_id=4276970&rfr_iscdi=true