Robustness of the Filtered-X LMS Algorithm- Part II: Robustness Enhancement by Minimal Regularization for Norm Bounded Uncertainty

The relationship between the regularization methods proposed in the literature to increase the robustness of the filtered-X LMS (FXLMS) algorithm is discussed. It is shown that the existing methods are special cases of a more general robust FXLMS algorithm in which particular filters determine the t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2007-08, Vol.55 (8), p.4038-4047
Hauptverfasser: Fraanje, R.., Elliott, S.J., Verhaegen, M..
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The relationship between the regularization methods proposed in the literature to increase the robustness of the filtered-X LMS (FXLMS) algorithm is discussed. It is shown that the existing methods are special cases of a more general robust FXLMS algorithm in which particular filters determine the type of regularization. Based on the analysis by Fraanje, Verhaegen, and Elliott [ldquorobustness of the filtered-X LMS algorithm - part I: necessary conditions for convergence and the asymptotic pseudospectrum of Toeplitz Matricesrdquo of this issue], regularization filters are designed that guarantee that the strictly positive real conditions for asymptotic convergence or noncritical behavior are just satisfied for all uncertain systems contained in a particular norm bounded set.
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2007.896086