Effective periodic pattern mining in time series databases
The goal of analyzing a time series database is to find whether and how frequent a periodic pattern is repeated within the series. Periodic pattern mining is the problem that regards temporal regularity. However, most of the existing algorithms have a major limitation in mining interesting patterns...
Gespeichert in:
Veröffentlicht in: | Expert systems with applications 2013-06, Vol.40 (8), p.3015-3027 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The goal of analyzing a time series database is to find whether and how frequent a periodic pattern is repeated within the series. Periodic pattern mining is the problem that regards temporal regularity. However, most of the existing algorithms have a major limitation in mining interesting patterns of users interest, that is, they can mine patterns of specific length with all the events sequentially one after another in exact positions within this pattern. Though there are certain scenarios where a pattern can be flexible, that is, it may be interesting and can be mined by neglecting any number of unimportant events in between important events with variable length of the pattern. Moreover, existing algorithms can detect only specific type of periodicity in various time series databases and require the interaction from user to determine periodicity. In this paper, we have proposed an algorithm for the periodic pattern mining in time series databases which does not rely on the user for the period value or period type of the pattern and can detect all types of periodic patterns at the same time, indeed these flexibilities are missing in existing algorithms. The proposed algorithm facilitates the user to generate different kinds of patterns by skipping intermediate events in a time series database and find out the periodicity of the patterns within the database. It is an improvement over the generating pattern using suffix tree, because suffix tree based algorithms have weakness in this particular area of pattern generation. Comparing with the existing algorithms, the proposed algorithm improves generating different kinds of interesting patterns and detects whether the generated pattern is periodic or not. We have tested the performance of our algorithm on both synthetic and real life data from different domains and found a large number of interesting event sequences which were missing in existing algorithms and the proposed algorithm was efficient enough in generating and detecting periodicity of flexible patterns on both types of data. |
---|---|
ISSN: | 0957-4174 1873-6793 |
DOI: | 10.1016/j.eswa.2012.12.017 |