Contact mechanics for soft robotic fingers: modeling and experimentation

Human fingers possess mechanical characteristics, which enable them to manipulate objects. In robotics, the study of soft fingertip materials for manipulation has been going on for a while; however, almost all previous researches have been carried on hemispherical shapes whereas this study concentra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Robotica 2013-07, Vol.31 (4), p.599-609, Article 599
Hauptverfasser: Bakhy, Sadeq H., Hassan, Shaker S., Nacy, Somer M., Dermitzakis, K., Arieta, Alejandro Hernandez
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Human fingers possess mechanical characteristics, which enable them to manipulate objects. In robotics, the study of soft fingertip materials for manipulation has been going on for a while; however, almost all previous researches have been carried on hemispherical shapes whereas this study concentrates on the use of hemicylindrical shapes. These shapes were found to be more resistant to elastic deformations for the same materials. The purpose of this work is to generate a modified nonlinear contact-mechanics theory for modeling soft fingertips, which is proposed as a power-law equation. The contact area of a hemicylindrical soft fingertip is proportional to the normal force raised to the power of γcy, which ranges from 0 to 1/2. Subsuming the Timoshenko and Goodier (S. P. Timoshenko and J. N. Goodier, Theory of Elasticity, 3rd ed. (McGraw-Hill, New York, 1970) pp. 414–420) linear contact theory for cylinders confirms the proposed power equation. We applied a weighted least-squares curve fitting to analyze the experimental data for different types of silicone (RTV 23, RTV 1701, and RTV 240). Our experimental results supported the proposed theoretical prediction. Results for human fingers and hemispherical soft fingers were also compared.
ISSN:0263-5747
1469-8668
1469-8668
DOI:10.1017/S0263574712000653