Contact mechanics for soft robotic fingers: modeling and experimentation
Human fingers possess mechanical characteristics, which enable them to manipulate objects. In robotics, the study of soft fingertip materials for manipulation has been going on for a while; however, almost all previous researches have been carried on hemispherical shapes whereas this study concentra...
Gespeichert in:
Veröffentlicht in: | Robotica 2013-07, Vol.31 (4), p.599-609, Article 599 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Human fingers possess mechanical characteristics, which enable them to manipulate objects. In robotics, the study of soft fingertip materials for manipulation has been going on for a while; however, almost all previous researches have been carried on hemispherical shapes whereas this study concentrates on the use of hemicylindrical shapes. These shapes were found to be more resistant to elastic deformations for the same materials. The purpose of this work is to generate a modified nonlinear contact-mechanics theory for modeling soft fingertips, which is proposed as a power-law equation. The contact area of a hemicylindrical soft fingertip is proportional to the normal force raised to the power of γcy, which ranges from 0 to 1/2. Subsuming the Timoshenko and Goodier (S. P. Timoshenko and J. N. Goodier, Theory of Elasticity, 3rd ed. (McGraw-Hill, New York, 1970) pp. 414–420) linear contact theory for cylinders confirms the proposed power equation. We applied a weighted least-squares curve fitting to analyze the experimental data for different types of silicone (RTV 23, RTV 1701, and RTV 240). Our experimental results supported the proposed theoretical prediction. Results for human fingers and hemispherical soft fingers were also compared. |
---|---|
ISSN: | 0263-5747 1469-8668 1469-8668 |
DOI: | 10.1017/S0263574712000653 |