Two-dimensional microcavity lasers

Advances in processing technology, such as quantum‐well structures and dry‐etching techniques, have made it possible to create new types of two‐dimensional (2D) microcavity lasers which have 2D emission patterns of output laser light although conventional one‐dimensional (1D) edge‐emitting‐type lase...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Laser & photonics reviews 2011-03, Vol.5 (2), p.247-271
Hauptverfasser: Harayama, T., Shinohara, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Advances in processing technology, such as quantum‐well structures and dry‐etching techniques, have made it possible to create new types of two‐dimensional (2D) microcavity lasers which have 2D emission patterns of output laser light although conventional one‐dimensional (1D) edge‐emitting‐type lasers have 1D emission. Two‐dimensional microcavity lasers have given nice experimental stages for fundamental researches on wave chaos closely related to quantum chaos. New types of 2D microcavity lasers also can offer the important lasing characteristics of directionality and high‐power output light, and they may well find applications in optical communications, integrated optical circuits, and optical sensors. Fundamental physics of 2D microcavity lasers has been reviewed from the viewpoint of classical and quantum chaos, and recently developed theoretical approaches have been introduced. In addition, nonlinear dynamics due to the interaction among wave‐chaotic modes through the active lasing medium is explained. Applications of 2D microcavity lasers for directional emission with strong light confinement are introduced, as well as high‐precision rotation sensors designed by using wave‐chaotic properties. Advances in processing technology, such as quantum‐well structures and dry‐etching techniques, have made it possible to create new types of two‐dimensional (2D) microcavity lasers which have 2D emission patterns of output laser light. Two‐dimensional microcavity lasers have given nice experimental stages for fundamental researches on wave chaos closely related to quantum chaos. New types of 2D microcavity lasers also can offer the important lasing characteristics of directionality and high‐power output light, and they may well find applications in optical communications, integrated optical circuits, and optical sensors.
ISSN:1863-8880
1863-8899
1863-8899
DOI:10.1002/lpor.200900057