Efficient Implementation of Iterative Adaptive Approach Spectral Estimation Techniques
This paper presents computationally efficient implementations for several recent algorithms based on the iterative adaptive approach (IAA) for uniformly sampled one- and two-dimensional data sets, considering both the complete data case, and the cases when the data sets are missing samples, either l...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2011-09, Vol.59 (9), p.4154-4167 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4167 |
---|---|
container_issue | 9 |
container_start_page | 4154 |
container_title | IEEE transactions on signal processing |
container_volume | 59 |
creator | Glentis, George-Othon Jakobsson, A. |
description | This paper presents computationally efficient implementations for several recent algorithms based on the iterative adaptive approach (IAA) for uniformly sampled one- and two-dimensional data sets, considering both the complete data case, and the cases when the data sets are missing samples, either lacking arbitrary locations, or having gaps or periodically reoccurring gaps. By exploiting the method's inherent low displacement rank, together with the development of suitable Gohberg-Semencul representations, and the use of data dependent trigonometric polynomials, the proposed implementations are shown to offer a reduction of the necessary computational complexity by at least one order of magnitude. Numerical simulations together with theoretical complexity measures illustrate the achieved performance gain. |
doi_str_mv | 10.1109/TSP.2011.2145376 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671377421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5753952</ieee_id><sourcerecordid>1671377421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-d1dd7f6e647ce5ff6b826a25ea8a4d6341115503c2cbc18eaeb52725066be4e33</originalsourceid><addsrcrecordid>eNpdUU2LFDEUDKLgOnoXvDSC4KXHvHz3cVlGHRhQ2FG8hXT6hc3S090m3Sv-ezP0MAcPj9QjVcUripC3QLcAtPl0vP--ZRRgy0BIrtUzcgONgJoKrZ4XTCWvpdG_XpJXOT9SCkI06ob83IUQfcRhrvanqcdTQW6O41CNodrPmMryhNVt56YVTFManX-o7if0c3J9tctzPK2SI_qHIf5eML8mL4LrM765vBvy4_PuePe1Pnz7sr-7PdReMDbXHXSdDgqV0B5lCKo1TDkm0RknOsUFAEhJuWe-9WDQYSuZZpIq1aJAzjfksPrmPzgtrZ1SuSX9taOLtl-mMm0Zm9GahrW-a8EilY0VBo01WoOlKASlGqjTbbH7uNqVkOcYsz3F7LHv3YDjki0oDVxrwaBQ3_9HfRyXNJSw1hhGqWGNKSS6knwac04YrgcCtefabKnNnmuzl9qK5MPF12Xv-pDc4GO-6piQDZOFuiHvVl5ExOu31JI3kvF_m5agAw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>882008298</pqid></control><display><type>article</type><title>Efficient Implementation of Iterative Adaptive Approach Spectral Estimation Techniques</title><source>IEEE Electronic Library (IEL)</source><creator>Glentis, George-Othon ; Jakobsson, A.</creator><creatorcontrib>Glentis, George-Othon ; Jakobsson, A.</creatorcontrib><description>This paper presents computationally efficient implementations for several recent algorithms based on the iterative adaptive approach (IAA) for uniformly sampled one- and two-dimensional data sets, considering both the complete data case, and the cases when the data sets are missing samples, either lacking arbitrary locations, or having gaps or periodically reoccurring gaps. By exploiting the method's inherent low displacement rank, together with the development of suitable Gohberg-Semencul representations, and the use of data dependent trigonometric polynomials, the proposed implementations are shown to offer a reduction of the necessary computational complexity by at least one order of magnitude. Numerical simulations together with theoretical complexity measures illustrate the achieved performance gain.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2011.2145376</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Complexity ; Computational complexity ; Computational efficiency ; Convergence ; Covariance matrix ; Detection, estimation, filtering, equalization, prediction ; Discrete Fourier transforms ; Estimation ; Exact sciences and technology ; fast algorithms ; Gain ; Gaps ; Information, signal and communications theory ; iterative adaptive approach (IAA) ; Iterative methods ; Matematik ; Mathematical models ; Mathematics ; Natural Sciences ; Naturvetenskap ; Polynomials ; Probability Theory and Statistics ; Sannolikhetsteori och statistik ; Signal and communications theory ; Signal representation. Spectral analysis ; Signal, noise ; Spectra ; spectrum estimation theory and methods ; Telecommunications and information theory</subject><ispartof>IEEE transactions on signal processing, 2011-09, Vol.59 (9), p.4154-4167</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-d1dd7f6e647ce5ff6b826a25ea8a4d6341115503c2cbc18eaeb52725066be4e33</citedby><cites>FETCH-LOGICAL-c422t-d1dd7f6e647ce5ff6b826a25ea8a4d6341115503c2cbc18eaeb52725066be4e33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5753952$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5753952$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24592545$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://lup.lub.lu.se/record/2158469$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Glentis, George-Othon</creatorcontrib><creatorcontrib>Jakobsson, A.</creatorcontrib><title>Efficient Implementation of Iterative Adaptive Approach Spectral Estimation Techniques</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>This paper presents computationally efficient implementations for several recent algorithms based on the iterative adaptive approach (IAA) for uniformly sampled one- and two-dimensional data sets, considering both the complete data case, and the cases when the data sets are missing samples, either lacking arbitrary locations, or having gaps or periodically reoccurring gaps. By exploiting the method's inherent low displacement rank, together with the development of suitable Gohberg-Semencul representations, and the use of data dependent trigonometric polynomials, the proposed implementations are shown to offer a reduction of the necessary computational complexity by at least one order of magnitude. Numerical simulations together with theoretical complexity measures illustrate the achieved performance gain.</description><subject>Applied sciences</subject><subject>Complexity</subject><subject>Computational complexity</subject><subject>Computational efficiency</subject><subject>Convergence</subject><subject>Covariance matrix</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Discrete Fourier transforms</subject><subject>Estimation</subject><subject>Exact sciences and technology</subject><subject>fast algorithms</subject><subject>Gain</subject><subject>Gaps</subject><subject>Information, signal and communications theory</subject><subject>iterative adaptive approach (IAA)</subject><subject>Iterative methods</subject><subject>Matematik</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Natural Sciences</subject><subject>Naturvetenskap</subject><subject>Polynomials</subject><subject>Probability Theory and Statistics</subject><subject>Sannolikhetsteori och statistik</subject><subject>Signal and communications theory</subject><subject>Signal representation. Spectral analysis</subject><subject>Signal, noise</subject><subject>Spectra</subject><subject>spectrum estimation theory and methods</subject><subject>Telecommunications and information theory</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdUU2LFDEUDKLgOnoXvDSC4KXHvHz3cVlGHRhQ2FG8hXT6hc3S090m3Sv-ezP0MAcPj9QjVcUripC3QLcAtPl0vP--ZRRgy0BIrtUzcgONgJoKrZ4XTCWvpdG_XpJXOT9SCkI06ob83IUQfcRhrvanqcdTQW6O41CNodrPmMryhNVt56YVTFManX-o7if0c3J9tctzPK2SI_qHIf5eML8mL4LrM765vBvy4_PuePe1Pnz7sr-7PdReMDbXHXSdDgqV0B5lCKo1TDkm0RknOsUFAEhJuWe-9WDQYSuZZpIq1aJAzjfksPrmPzgtrZ1SuSX9taOLtl-mMm0Zm9GahrW-a8EilY0VBo01WoOlKASlGqjTbbH7uNqVkOcYsz3F7LHv3YDjki0oDVxrwaBQ3_9HfRyXNJSw1hhGqWGNKSS6knwac04YrgcCtefabKnNnmuzl9qK5MPF12Xv-pDc4GO-6piQDZOFuiHvVl5ExOu31JI3kvF_m5agAw</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>Glentis, George-Othon</creator><creator>Jakobsson, A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D95</scope></search><sort><creationdate>20110901</creationdate><title>Efficient Implementation of Iterative Adaptive Approach Spectral Estimation Techniques</title><author>Glentis, George-Othon ; Jakobsson, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-d1dd7f6e647ce5ff6b826a25ea8a4d6341115503c2cbc18eaeb52725066be4e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Complexity</topic><topic>Computational complexity</topic><topic>Computational efficiency</topic><topic>Convergence</topic><topic>Covariance matrix</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Discrete Fourier transforms</topic><topic>Estimation</topic><topic>Exact sciences and technology</topic><topic>fast algorithms</topic><topic>Gain</topic><topic>Gaps</topic><topic>Information, signal and communications theory</topic><topic>iterative adaptive approach (IAA)</topic><topic>Iterative methods</topic><topic>Matematik</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Natural Sciences</topic><topic>Naturvetenskap</topic><topic>Polynomials</topic><topic>Probability Theory and Statistics</topic><topic>Sannolikhetsteori och statistik</topic><topic>Signal and communications theory</topic><topic>Signal representation. Spectral analysis</topic><topic>Signal, noise</topic><topic>Spectra</topic><topic>spectrum estimation theory and methods</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Glentis, George-Othon</creatorcontrib><creatorcontrib>Jakobsson, A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Lunds universitet</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Glentis, George-Othon</au><au>Jakobsson, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Implementation of Iterative Adaptive Approach Spectral Estimation Techniques</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2011-09-01</date><risdate>2011</risdate><volume>59</volume><issue>9</issue><spage>4154</spage><epage>4167</epage><pages>4154-4167</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>This paper presents computationally efficient implementations for several recent algorithms based on the iterative adaptive approach (IAA) for uniformly sampled one- and two-dimensional data sets, considering both the complete data case, and the cases when the data sets are missing samples, either lacking arbitrary locations, or having gaps or periodically reoccurring gaps. By exploiting the method's inherent low displacement rank, together with the development of suitable Gohberg-Semencul representations, and the use of data dependent trigonometric polynomials, the proposed implementations are shown to offer a reduction of the necessary computational complexity by at least one order of magnitude. Numerical simulations together with theoretical complexity measures illustrate the achieved performance gain.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2011.2145376</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2011-09, Vol.59 (9), p.4154-4167 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671377421 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Complexity Computational complexity Computational efficiency Convergence Covariance matrix Detection, estimation, filtering, equalization, prediction Discrete Fourier transforms Estimation Exact sciences and technology fast algorithms Gain Gaps Information, signal and communications theory iterative adaptive approach (IAA) Iterative methods Matematik Mathematical models Mathematics Natural Sciences Naturvetenskap Polynomials Probability Theory and Statistics Sannolikhetsteori och statistik Signal and communications theory Signal representation. Spectral analysis Signal, noise Spectra spectrum estimation theory and methods Telecommunications and information theory |
title | Efficient Implementation of Iterative Adaptive Approach Spectral Estimation Techniques |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T00%3A17%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Implementation%20of%20Iterative%20Adaptive%20Approach%20Spectral%20Estimation%20Techniques&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Glentis,%20George-Othon&rft.date=2011-09-01&rft.volume=59&rft.issue=9&rft.spage=4154&rft.epage=4167&rft.pages=4154-4167&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2011.2145376&rft_dat=%3Cproquest_RIE%3E1671377421%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=882008298&rft_id=info:pmid/&rft_ieee_id=5753952&rfr_iscdi=true |