Efficient Implementation of Iterative Adaptive Approach Spectral Estimation Techniques

This paper presents computationally efficient implementations for several recent algorithms based on the iterative adaptive approach (IAA) for uniformly sampled one- and two-dimensional data sets, considering both the complete data case, and the cases when the data sets are missing samples, either l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2011-09, Vol.59 (9), p.4154-4167
Hauptverfasser: Glentis, George-Othon, Jakobsson, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents computationally efficient implementations for several recent algorithms based on the iterative adaptive approach (IAA) for uniformly sampled one- and two-dimensional data sets, considering both the complete data case, and the cases when the data sets are missing samples, either lacking arbitrary locations, or having gaps or periodically reoccurring gaps. By exploiting the method's inherent low displacement rank, together with the development of suitable Gohberg-Semencul representations, and the use of data dependent trigonometric polynomials, the proposed implementations are shown to offer a reduction of the necessary computational complexity by at least one order of magnitude. Numerical simulations together with theoretical complexity measures illustrate the achieved performance gain.
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2011.2145376