Adaptivity and a Posteriori Error Control for Bifurcation Problems II: Incompressible Fluid Flow in Open Systems with Z2 Symmetry

In this article we consider the a posteriori error estimation and adaptive mesh refinement of discontinuous Galerkin finite element approximations of the bifurcation problem associated with the steady incompressible Navier–Stokes equations. Particular attention is given to the reliable error estimat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of scientific computing 2011-06, Vol.47 (3), p.389-418
Hauptverfasser: Cliffe, K. Andrew, Hall, Edward J. C., Houston, Paul, Phipps, Eric T., Salinger, Andrew G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 418
container_issue 3
container_start_page 389
container_title Journal of scientific computing
container_volume 47
creator Cliffe, K. Andrew
Hall, Edward J. C.
Houston, Paul
Phipps, Eric T.
Salinger, Andrew G.
description In this article we consider the a posteriori error estimation and adaptive mesh refinement of discontinuous Galerkin finite element approximations of the bifurcation problem associated with the steady incompressible Navier–Stokes equations. Particular attention is given to the reliable error estimation of the critical Reynolds number at which a steady pitchfork or Hopf bifurcation occurs when the underlying physical system possesses reflectional or Z 2 symmetry. Here, computable a posteriori error bounds are derived based on employing the generalization of the standard Dual–Weighted–Residual approach, originally developed for the estimation of target functionals of the solution, to bifurcation problems. Numerical experiments highlighting the practical performance of the proposed a posteriori error indicator on adaptively refined computational meshes are presented.
doi_str_mv 10.1007/s10915-010-9453-3
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671377103</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918312561</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1043-48362eced3cc0fc45e1616a22cd0321d2ede766e1467d0975918513b4637d9fd3</originalsourceid><addsrcrecordid>eNpdkU9LwzAYh4MoOKcfwFvAi5dq3qRNWm9zbFoYOFAvXkrXpJrRJjVpHbv6SfwsfjIzJghe3n88_HjhQegcyBUQIq49kAySiACJsjhhETtAI0gEiwTP4BCNSJomkYhFfIxOvF8TQrI0oyP0OZFl1-sP3W9xaSQu8dL6XjltncYz56zDU2t6Zxtch_lW14Oryl5bg5fOrhrV-u-vPL_Buals2znlvQ5XPG8GLUO1G6wNfuiUwY_bENx6vNH9G36hYW9b1bvtKTqqy8ars98-Rs_z2dP0Plo83OXTySLqgMQsilPGqaqUZFVF6ipOFHDgJaWVJIyCpEoqwbmCmAtJMpFkkCbAVjFnQma1ZGN0uc_tnH0flO-LVvtKNU1plB18AVwAEwIIC-jFP3RtB2fCdwUNsQxowiFQdE_5zmnzqtwfBaTYaSn2WoqgpdhpKRj7AacYgPI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918312561</pqid></control><display><type>article</type><title>Adaptivity and a Posteriori Error Control for Bifurcation Problems II: Incompressible Fluid Flow in Open Systems with Z2 Symmetry</title><source>SpringerLink Journals</source><source>ProQuest Central</source><creator>Cliffe, K. Andrew ; Hall, Edward J. C. ; Houston, Paul ; Phipps, Eric T. ; Salinger, Andrew G.</creator><creatorcontrib>Cliffe, K. Andrew ; Hall, Edward J. C. ; Houston, Paul ; Phipps, Eric T. ; Salinger, Andrew G.</creatorcontrib><description>In this article we consider the a posteriori error estimation and adaptive mesh refinement of discontinuous Galerkin finite element approximations of the bifurcation problem associated with the steady incompressible Navier–Stokes equations. Particular attention is given to the reliable error estimation of the critical Reynolds number at which a steady pitchfork or Hopf bifurcation occurs when the underlying physical system possesses reflectional or Z 2 symmetry. Here, computable a posteriori error bounds are derived based on employing the generalization of the standard Dual–Weighted–Residual approach, originally developed for the estimation of target functionals of the solution, to bifurcation problems. Numerical experiments highlighting the practical performance of the proposed a posteriori error indicator on adaptively refined computational meshes are presented.</description><identifier>ISSN: 0885-7474</identifier><identifier>EISSN: 1573-7691</identifier><identifier>DOI: 10.1007/s10915-010-9453-3</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algorithms ; Bifurcations ; Computation ; Computational fluid dynamics ; Computational Mathematics and Numerical Analysis ; Error analysis ; Errors ; Fluid flow ; Grid refinement (mathematics) ; Hopf bifurcation ; Incompressible flow ; Incompressible fluids ; Mathematical analysis ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Open systems ; Reynolds number ; Symmetry ; Theoretical</subject><ispartof>Journal of scientific computing, 2011-06, Vol.47 (3), p.389-418</ispartof><rights>Springer Science+Business Media, LLC 2011</rights><rights>Springer Science+Business Media, LLC 2011.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10915-010-9453-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918312561?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,33722,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Cliffe, K. Andrew</creatorcontrib><creatorcontrib>Hall, Edward J. C.</creatorcontrib><creatorcontrib>Houston, Paul</creatorcontrib><creatorcontrib>Phipps, Eric T.</creatorcontrib><creatorcontrib>Salinger, Andrew G.</creatorcontrib><title>Adaptivity and a Posteriori Error Control for Bifurcation Problems II: Incompressible Fluid Flow in Open Systems with Z2 Symmetry</title><title>Journal of scientific computing</title><addtitle>J Sci Comput</addtitle><description>In this article we consider the a posteriori error estimation and adaptive mesh refinement of discontinuous Galerkin finite element approximations of the bifurcation problem associated with the steady incompressible Navier–Stokes equations. Particular attention is given to the reliable error estimation of the critical Reynolds number at which a steady pitchfork or Hopf bifurcation occurs when the underlying physical system possesses reflectional or Z 2 symmetry. Here, computable a posteriori error bounds are derived based on employing the generalization of the standard Dual–Weighted–Residual approach, originally developed for the estimation of target functionals of the solution, to bifurcation problems. Numerical experiments highlighting the practical performance of the proposed a posteriori error indicator on adaptively refined computational meshes are presented.</description><subject>Algorithms</subject><subject>Bifurcations</subject><subject>Computation</subject><subject>Computational fluid dynamics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Error analysis</subject><subject>Errors</subject><subject>Fluid flow</subject><subject>Grid refinement (mathematics)</subject><subject>Hopf bifurcation</subject><subject>Incompressible flow</subject><subject>Incompressible fluids</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Open systems</subject><subject>Reynolds number</subject><subject>Symmetry</subject><subject>Theoretical</subject><issn>0885-7474</issn><issn>1573-7691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkU9LwzAYh4MoOKcfwFvAi5dq3qRNWm9zbFoYOFAvXkrXpJrRJjVpHbv6SfwsfjIzJghe3n88_HjhQegcyBUQIq49kAySiACJsjhhETtAI0gEiwTP4BCNSJomkYhFfIxOvF8TQrI0oyP0OZFl1-sP3W9xaSQu8dL6XjltncYz56zDU2t6Zxtch_lW14Oryl5bg5fOrhrV-u-vPL_Buals2znlvQ5XPG8GLUO1G6wNfuiUwY_bENx6vNH9G36hYW9b1bvtKTqqy8ars98-Rs_z2dP0Plo83OXTySLqgMQsilPGqaqUZFVF6ipOFHDgJaWVJIyCpEoqwbmCmAtJMpFkkCbAVjFnQma1ZGN0uc_tnH0flO-LVvtKNU1plB18AVwAEwIIC-jFP3RtB2fCdwUNsQxowiFQdE_5zmnzqtwfBaTYaSn2WoqgpdhpKRj7AacYgPI</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Cliffe, K. Andrew</creator><creator>Hall, Edward J. C.</creator><creator>Houston, Paul</creator><creator>Phipps, Eric T.</creator><creator>Salinger, Andrew G.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110601</creationdate><title>Adaptivity and a Posteriori Error Control for Bifurcation Problems II: Incompressible Fluid Flow in Open Systems with Z2 Symmetry</title><author>Cliffe, K. Andrew ; Hall, Edward J. C. ; Houston, Paul ; Phipps, Eric T. ; Salinger, Andrew G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1043-48362eced3cc0fc45e1616a22cd0321d2ede766e1467d0975918513b4637d9fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Bifurcations</topic><topic>Computation</topic><topic>Computational fluid dynamics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Error analysis</topic><topic>Errors</topic><topic>Fluid flow</topic><topic>Grid refinement (mathematics)</topic><topic>Hopf bifurcation</topic><topic>Incompressible flow</topic><topic>Incompressible fluids</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Open systems</topic><topic>Reynolds number</topic><topic>Symmetry</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cliffe, K. Andrew</creatorcontrib><creatorcontrib>Hall, Edward J. C.</creatorcontrib><creatorcontrib>Houston, Paul</creatorcontrib><creatorcontrib>Phipps, Eric T.</creatorcontrib><creatorcontrib>Salinger, Andrew G.</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cliffe, K. Andrew</au><au>Hall, Edward J. C.</au><au>Houston, Paul</au><au>Phipps, Eric T.</au><au>Salinger, Andrew G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptivity and a Posteriori Error Control for Bifurcation Problems II: Incompressible Fluid Flow in Open Systems with Z2 Symmetry</atitle><jtitle>Journal of scientific computing</jtitle><stitle>J Sci Comput</stitle><date>2011-06-01</date><risdate>2011</risdate><volume>47</volume><issue>3</issue><spage>389</spage><epage>418</epage><pages>389-418</pages><issn>0885-7474</issn><eissn>1573-7691</eissn><abstract>In this article we consider the a posteriori error estimation and adaptive mesh refinement of discontinuous Galerkin finite element approximations of the bifurcation problem associated with the steady incompressible Navier–Stokes equations. Particular attention is given to the reliable error estimation of the critical Reynolds number at which a steady pitchfork or Hopf bifurcation occurs when the underlying physical system possesses reflectional or Z 2 symmetry. Here, computable a posteriori error bounds are derived based on employing the generalization of the standard Dual–Weighted–Residual approach, originally developed for the estimation of target functionals of the solution, to bifurcation problems. Numerical experiments highlighting the practical performance of the proposed a posteriori error indicator on adaptively refined computational meshes are presented.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10915-010-9453-3</doi><tpages>30</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0885-7474
ispartof Journal of scientific computing, 2011-06, Vol.47 (3), p.389-418
issn 0885-7474
1573-7691
language eng
recordid cdi_proquest_miscellaneous_1671377103
source SpringerLink Journals; ProQuest Central
subjects Algorithms
Bifurcations
Computation
Computational fluid dynamics
Computational Mathematics and Numerical Analysis
Error analysis
Errors
Fluid flow
Grid refinement (mathematics)
Hopf bifurcation
Incompressible flow
Incompressible fluids
Mathematical analysis
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Open systems
Reynolds number
Symmetry
Theoretical
title Adaptivity and a Posteriori Error Control for Bifurcation Problems II: Incompressible Fluid Flow in Open Systems with Z2 Symmetry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A49%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptivity%20and%20a%20Posteriori%20Error%20Control%20for%20Bifurcation%20Problems%C2%A0II:%20Incompressible%20Fluid%20Flow%20in%20Open%20Systems%20with%20Z2%20Symmetry&rft.jtitle=Journal%20of%20scientific%20computing&rft.au=Cliffe,%20K.%20Andrew&rft.date=2011-06-01&rft.volume=47&rft.issue=3&rft.spage=389&rft.epage=418&rft.pages=389-418&rft.issn=0885-7474&rft.eissn=1573-7691&rft_id=info:doi/10.1007/s10915-010-9453-3&rft_dat=%3Cproquest_sprin%3E2918312561%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918312561&rft_id=info:pmid/&rfr_iscdi=true