Adaptivity and a Posteriori Error Control for Bifurcation Problems II: Incompressible Fluid Flow in Open Systems with Z2 Symmetry
In this article we consider the a posteriori error estimation and adaptive mesh refinement of discontinuous Galerkin finite element approximations of the bifurcation problem associated with the steady incompressible Navier–Stokes equations. Particular attention is given to the reliable error estimat...
Gespeichert in:
Veröffentlicht in: | Journal of scientific computing 2011-06, Vol.47 (3), p.389-418 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article we consider the
a posteriori
error estimation and adaptive mesh refinement of discontinuous Galerkin finite element approximations of the bifurcation problem associated with the steady incompressible Navier–Stokes equations. Particular attention is given to the reliable error estimation of the critical Reynolds number at which a steady pitchfork or Hopf bifurcation occurs when the underlying physical system possesses reflectional or
Z
2
symmetry. Here, computable
a posteriori
error bounds are derived based on employing the generalization of the standard Dual–Weighted–Residual approach, originally developed for the estimation of target functionals of the solution, to bifurcation problems. Numerical experiments highlighting the practical performance of the proposed
a posteriori
error indicator on adaptively refined computational meshes are presented. |
---|---|
ISSN: | 0885-7474 1573-7691 |
DOI: | 10.1007/s10915-010-9453-3 |