Flower-like mesoporous silica: a bifunctionalized catalyst for rhodium-catalyzed asymmetric transfer hydrogenation of aromatic ketones in aqueous medium
Functionalized flower-like mesoporous silica with a chiral organorhodium functionality incorporated within its silica framework is prepared through an assembly of chiral 4-((trimethoxysilyl)ethyl)phenylsulfonyl-1,2-diphenylethylenediami n e and tetraethoxysilane under a cooperative dual-template app...
Gespeichert in:
Veröffentlicht in: | Green chemistry : an international journal and green chemistry resource : GC 2013-01, Vol.15 (8), p.2208-2214 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Functionalized flower-like mesoporous silica with a chiral organorhodium functionality incorporated within its silica framework is prepared through an assembly of chiral 4-((trimethoxysilyl)ethyl)phenylsulfonyl-1,2-diphenylethylenediami n e and tetraethoxysilane under a cooperative dual-template approach followed by complexation with organorhodium complexes. Structural characterization discloses its mesostructure and well-defined single-site chiral organorhodium functionality, while electron microscopy analyses reveal the uniformly distributed three-dimensional spherical flowers constructed by the stacking of leaf-shaped nanoflakes. In particular, as a bifunctionalized heterogeneous catalyst, it shows excellent catalytic activity and high enantioselectivity in the asymmetric transfer hydrogenation of aromatic ketones in aqueous medium (more than 99% conversion and up to 97% ee). The superior catalytic performance is attributed to the synergistic effect of the salient cetyltrimethylammonium bromide phase-transfer function and confined chiral organorhodium catalytic nature. Furthermore, this heterogeneous catalyst could be recovered easily and reused repeatedly (ten times) without affecting its ee value, showing a practical application in asymmetric synthesis. |
---|---|
ISSN: | 1463-9262 1463-9270 |
DOI: | 10.1039/c3gc40547h |