A Multivariable Adaptive Control Approach for Stabilization of a Cart-Type Double Inverted Pendulum

This paper considers the design and practical implementation of linear-based controllers for a cart-type double inverted pendulum (DIPC). A constitution of two linked pendulums placed on a sliding cart, presenting a three Degrees of Freedom and single controlling input structure. The controller obje...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical Problems in Engineering 2011-01, Vol.2011 (1), p.1144-1157-267
Hauptverfasser: Hassanzadeh, I., Nejadfard, A., Zadi, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper considers the design and practical implementation of linear-based controllers for a cart-type double inverted pendulum (DIPC). A constitution of two linked pendulums placed on a sliding cart, presenting a three Degrees of Freedom and single controlling input structure. The controller objective is to keep both pendulums in an up-up unstable equilibrium point. Modeling is based on the Euler-Lagrange equations, and the resulted nonlinear model is linearized around up-up position. First, the LQR method is used to stabilize DIPC by a feedback gain matrix in order to minimize a quadratic cost function. Without using an observer to estimate the unmeasured states, in the next step we make use of LQG controller which combines the Kalman-Bucy filter estimation and LQR feedback control to obtain a better steady-state performance, but poor robustness. Eventually, to overcome the unknown nonlinear model parameters, an adaptive controller is designed. This controller is based on Model Reference Adaptive System (MRAS) method, which uses the Lyapunov function to eliminate the defined state error. This controller improves both the steady-state and disturbance responses.
ISSN:1024-123X
1563-5147
DOI:10.1155/2011/970786