Statistical inference for the optimal approximating model

In the setting of high-dimensional linear models with Gaussian noise, we investigate the possibility of confidence statements connected to model selection. Although there exist numerous procedures for adaptive (point) estimation, the construction of adaptive confidence regions is severely limited (c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Probability theory and related fields 2013-04, Vol.155 (3-4), p.839-865
Hauptverfasser: Rohde, Angelika, Dümbgen, Lutz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 865
container_issue 3-4
container_start_page 839
container_title Probability theory and related fields
container_volume 155
creator Rohde, Angelika
Dümbgen, Lutz
description In the setting of high-dimensional linear models with Gaussian noise, we investigate the possibility of confidence statements connected to model selection. Although there exist numerous procedures for adaptive (point) estimation, the construction of adaptive confidence regions is severely limited (cf. Li in Ann Stat 17:1001–1008, 1989 ). The present paper sheds new light on this gap. We develop exact and adaptive confidence regions for the best approximating model in terms of risk. One of our constructions is based on a multiscale procedure and a particular coupling argument. Utilizing exponential inequalities for noncentral χ 2 -distributions, we show that the risk and quadratic loss of all models within our confidence region are uniformly bounded by the minimal risk times a factor close to one.
doi_str_mv 10.1007/s00440-012-0414-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671352446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2661267388</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-7e7efe5efc6b1470191e58d8046b430f7825a8f57fc96f05bbdafaffbd3ee9713</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYMouK7-Ad4KXrxEJ2m-epTFL1jwoJ5D2k7WLt12TbKg_71Z6kEEPc3A_N7jzSPknMEVA9DXEUAIoMA4BcEE1QdkxkTJKQclDskMmDbUgGTH5CTGNQDwUvAZqZ6TS11MXeP6ohs8BhwaLPwYivSGxbhN3SZf3HYbxo-8pm5YFZuxxf6UHHnXRzz7nnPyenf7snigy6f7x8XNkjaCQ6IaNXqU6BtVM6GBVQylaQ0IVYsSvDZcOuOl9k2lPMi6bp133tdtiVhpVs7J5eSbE7zvMCa76WKDfe8GHHfRMpUhyYVQGb34ha7HXRhyOsuVYlzp0pj_qGykuQEGMlNsopowxhjQ223I_4dPy8DuK7dT5TZXbveVW501fNLEzA4rDD-c_xR9AVTcgm0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1357280105</pqid></control><display><type>article</type><title>Statistical inference for the optimal approximating model</title><source>Business Source Complete</source><source>Springer Nature - Complete Springer Journals</source><creator>Rohde, Angelika ; Dümbgen, Lutz</creator><creatorcontrib>Rohde, Angelika ; Dümbgen, Lutz</creatorcontrib><description>In the setting of high-dimensional linear models with Gaussian noise, we investigate the possibility of confidence statements connected to model selection. Although there exist numerous procedures for adaptive (point) estimation, the construction of adaptive confidence regions is severely limited (cf. Li in Ann Stat 17:1001–1008, 1989 ). The present paper sheds new light on this gap. We develop exact and adaptive confidence regions for the best approximating model in terms of risk. One of our constructions is based on a multiscale procedure and a particular coupling argument. Utilizing exponential inequalities for noncentral χ 2 -distributions, we show that the risk and quadratic loss of all models within our confidence region are uniformly bounded by the minimal risk times a factor close to one.</description><identifier>ISSN: 0178-8051</identifier><identifier>EISSN: 1432-2064</identifier><identifier>DOI: 10.1007/s00440-012-0414-7</identifier><identifier>CODEN: PTRFEU</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Adaptation ; Analysis ; Approximation ; Confidence ; Confidence intervals ; Construction ; Economics ; Finance ; Gaussian ; Generalized linear models ; Hypotheses ; Inequalities ; Insurance ; Management ; Mathematical and Computational Biology ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Noise ; Normal distribution ; Operations Research/Decision Theory ; Optimization ; Probability ; Probability Theory and Stochastic Processes ; Quantitative Finance ; Random noise ; Risk ; Statistical inference ; Statistics for Business ; Studies ; Theoretical</subject><ispartof>Probability theory and related fields, 2013-04, Vol.155 (3-4), p.839-865</ispartof><rights>Springer-Verlag 2012</rights><rights>Springer-Verlag Berlin Heidelberg 2013</rights><rights>Springer-Verlag 2012.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-7e7efe5efc6b1470191e58d8046b430f7825a8f57fc96f05bbdafaffbd3ee9713</citedby><cites>FETCH-LOGICAL-c420t-7e7efe5efc6b1470191e58d8046b430f7825a8f57fc96f05bbdafaffbd3ee9713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00440-012-0414-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00440-012-0414-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids></links><search><creatorcontrib>Rohde, Angelika</creatorcontrib><creatorcontrib>Dümbgen, Lutz</creatorcontrib><title>Statistical inference for the optimal approximating model</title><title>Probability theory and related fields</title><addtitle>Probab. Theory Relat. Fields</addtitle><description>In the setting of high-dimensional linear models with Gaussian noise, we investigate the possibility of confidence statements connected to model selection. Although there exist numerous procedures for adaptive (point) estimation, the construction of adaptive confidence regions is severely limited (cf. Li in Ann Stat 17:1001–1008, 1989 ). The present paper sheds new light on this gap. We develop exact and adaptive confidence regions for the best approximating model in terms of risk. One of our constructions is based on a multiscale procedure and a particular coupling argument. Utilizing exponential inequalities for noncentral χ 2 -distributions, we show that the risk and quadratic loss of all models within our confidence region are uniformly bounded by the minimal risk times a factor close to one.</description><subject>Adaptation</subject><subject>Analysis</subject><subject>Approximation</subject><subject>Confidence</subject><subject>Confidence intervals</subject><subject>Construction</subject><subject>Economics</subject><subject>Finance</subject><subject>Gaussian</subject><subject>Generalized linear models</subject><subject>Hypotheses</subject><subject>Inequalities</subject><subject>Insurance</subject><subject>Management</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Noise</subject><subject>Normal distribution</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Probability</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Quantitative Finance</subject><subject>Random noise</subject><subject>Risk</subject><subject>Statistical inference</subject><subject>Statistics for Business</subject><subject>Studies</subject><subject>Theoretical</subject><issn>0178-8051</issn><issn>1432-2064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kM1LxDAQxYMouK7-Ad4KXrxEJ2m-epTFL1jwoJ5D2k7WLt12TbKg_71Z6kEEPc3A_N7jzSPknMEVA9DXEUAIoMA4BcEE1QdkxkTJKQclDskMmDbUgGTH5CTGNQDwUvAZqZ6TS11MXeP6ohs8BhwaLPwYivSGxbhN3SZf3HYbxo-8pm5YFZuxxf6UHHnXRzz7nnPyenf7snigy6f7x8XNkjaCQ6IaNXqU6BtVM6GBVQylaQ0IVYsSvDZcOuOl9k2lPMi6bp133tdtiVhpVs7J5eSbE7zvMCa76WKDfe8GHHfRMpUhyYVQGb34ha7HXRhyOsuVYlzp0pj_qGykuQEGMlNsopowxhjQ223I_4dPy8DuK7dT5TZXbveVW501fNLEzA4rDD-c_xR9AVTcgm0</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Rohde, Angelika</creator><creator>Dümbgen, Lutz</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20130401</creationdate><title>Statistical inference for the optimal approximating model</title><author>Rohde, Angelika ; Dümbgen, Lutz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-7e7efe5efc6b1470191e58d8046b430f7825a8f57fc96f05bbdafaffbd3ee9713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adaptation</topic><topic>Analysis</topic><topic>Approximation</topic><topic>Confidence</topic><topic>Confidence intervals</topic><topic>Construction</topic><topic>Economics</topic><topic>Finance</topic><topic>Gaussian</topic><topic>Generalized linear models</topic><topic>Hypotheses</topic><topic>Inequalities</topic><topic>Insurance</topic><topic>Management</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Noise</topic><topic>Normal distribution</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Probability</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Quantitative Finance</topic><topic>Random noise</topic><topic>Risk</topic><topic>Statistical inference</topic><topic>Statistics for Business</topic><topic>Studies</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rohde, Angelika</creatorcontrib><creatorcontrib>Dümbgen, Lutz</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Probability theory and related fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rohde, Angelika</au><au>Dümbgen, Lutz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical inference for the optimal approximating model</atitle><jtitle>Probability theory and related fields</jtitle><stitle>Probab. Theory Relat. Fields</stitle><date>2013-04-01</date><risdate>2013</risdate><volume>155</volume><issue>3-4</issue><spage>839</spage><epage>865</epage><pages>839-865</pages><issn>0178-8051</issn><eissn>1432-2064</eissn><coden>PTRFEU</coden><abstract>In the setting of high-dimensional linear models with Gaussian noise, we investigate the possibility of confidence statements connected to model selection. Although there exist numerous procedures for adaptive (point) estimation, the construction of adaptive confidence regions is severely limited (cf. Li in Ann Stat 17:1001–1008, 1989 ). The present paper sheds new light on this gap. We develop exact and adaptive confidence regions for the best approximating model in terms of risk. One of our constructions is based on a multiscale procedure and a particular coupling argument. Utilizing exponential inequalities for noncentral χ 2 -distributions, we show that the risk and quadratic loss of all models within our confidence region are uniformly bounded by the minimal risk times a factor close to one.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00440-012-0414-7</doi><tpages>27</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0178-8051
ispartof Probability theory and related fields, 2013-04, Vol.155 (3-4), p.839-865
issn 0178-8051
1432-2064
language eng
recordid cdi_proquest_miscellaneous_1671352446
source Business Source Complete; Springer Nature - Complete Springer Journals
subjects Adaptation
Analysis
Approximation
Confidence
Confidence intervals
Construction
Economics
Finance
Gaussian
Generalized linear models
Hypotheses
Inequalities
Insurance
Management
Mathematical and Computational Biology
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Noise
Normal distribution
Operations Research/Decision Theory
Optimization
Probability
Probability Theory and Stochastic Processes
Quantitative Finance
Random noise
Risk
Statistical inference
Statistics for Business
Studies
Theoretical
title Statistical inference for the optimal approximating model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T22%3A30%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20inference%20for%20the%20optimal%20approximating%20model&rft.jtitle=Probability%20theory%20and%20related%20fields&rft.au=Rohde,%20Angelika&rft.date=2013-04-01&rft.volume=155&rft.issue=3-4&rft.spage=839&rft.epage=865&rft.pages=839-865&rft.issn=0178-8051&rft.eissn=1432-2064&rft.coden=PTRFEU&rft_id=info:doi/10.1007/s00440-012-0414-7&rft_dat=%3Cproquest_cross%3E2661267388%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1357280105&rft_id=info:pmid/&rfr_iscdi=true