Statistical inference for the optimal approximating model
In the setting of high-dimensional linear models with Gaussian noise, we investigate the possibility of confidence statements connected to model selection. Although there exist numerous procedures for adaptive (point) estimation, the construction of adaptive confidence regions is severely limited (c...
Gespeichert in:
Veröffentlicht in: | Probability theory and related fields 2013-04, Vol.155 (3-4), p.839-865 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 865 |
---|---|
container_issue | 3-4 |
container_start_page | 839 |
container_title | Probability theory and related fields |
container_volume | 155 |
creator | Rohde, Angelika Dümbgen, Lutz |
description | In the setting of high-dimensional linear models with Gaussian noise, we investigate the possibility of confidence statements connected to model selection. Although there exist numerous procedures for adaptive (point) estimation, the construction of adaptive confidence regions is severely limited (cf. Li in Ann Stat 17:1001–1008,
1989
). The present paper sheds new light on this gap. We develop exact and adaptive confidence regions for the best approximating model in terms of risk. One of our constructions is based on a multiscale procedure and a particular coupling argument. Utilizing exponential inequalities for noncentral
χ
2
-distributions, we show that the risk and quadratic loss of all models within our confidence region are uniformly bounded by the minimal risk times a factor close to one. |
doi_str_mv | 10.1007/s00440-012-0414-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671352446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2661267388</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-7e7efe5efc6b1470191e58d8046b430f7825a8f57fc96f05bbdafaffbd3ee9713</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYMouK7-Ad4KXrxEJ2m-epTFL1jwoJ5D2k7WLt12TbKg_71Z6kEEPc3A_N7jzSPknMEVA9DXEUAIoMA4BcEE1QdkxkTJKQclDskMmDbUgGTH5CTGNQDwUvAZqZ6TS11MXeP6ohs8BhwaLPwYivSGxbhN3SZf3HYbxo-8pm5YFZuxxf6UHHnXRzz7nnPyenf7snigy6f7x8XNkjaCQ6IaNXqU6BtVM6GBVQylaQ0IVYsSvDZcOuOl9k2lPMi6bp133tdtiVhpVs7J5eSbE7zvMCa76WKDfe8GHHfRMpUhyYVQGb34ha7HXRhyOsuVYlzp0pj_qGykuQEGMlNsopowxhjQ223I_4dPy8DuK7dT5TZXbveVW501fNLEzA4rDD-c_xR9AVTcgm0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1357280105</pqid></control><display><type>article</type><title>Statistical inference for the optimal approximating model</title><source>Business Source Complete</source><source>Springer Nature - Complete Springer Journals</source><creator>Rohde, Angelika ; Dümbgen, Lutz</creator><creatorcontrib>Rohde, Angelika ; Dümbgen, Lutz</creatorcontrib><description>In the setting of high-dimensional linear models with Gaussian noise, we investigate the possibility of confidence statements connected to model selection. Although there exist numerous procedures for adaptive (point) estimation, the construction of adaptive confidence regions is severely limited (cf. Li in Ann Stat 17:1001–1008,
1989
). The present paper sheds new light on this gap. We develop exact and adaptive confidence regions for the best approximating model in terms of risk. One of our constructions is based on a multiscale procedure and a particular coupling argument. Utilizing exponential inequalities for noncentral
χ
2
-distributions, we show that the risk and quadratic loss of all models within our confidence region are uniformly bounded by the minimal risk times a factor close to one.</description><identifier>ISSN: 0178-8051</identifier><identifier>EISSN: 1432-2064</identifier><identifier>DOI: 10.1007/s00440-012-0414-7</identifier><identifier>CODEN: PTRFEU</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Adaptation ; Analysis ; Approximation ; Confidence ; Confidence intervals ; Construction ; Economics ; Finance ; Gaussian ; Generalized linear models ; Hypotheses ; Inequalities ; Insurance ; Management ; Mathematical and Computational Biology ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Noise ; Normal distribution ; Operations Research/Decision Theory ; Optimization ; Probability ; Probability Theory and Stochastic Processes ; Quantitative Finance ; Random noise ; Risk ; Statistical inference ; Statistics for Business ; Studies ; Theoretical</subject><ispartof>Probability theory and related fields, 2013-04, Vol.155 (3-4), p.839-865</ispartof><rights>Springer-Verlag 2012</rights><rights>Springer-Verlag Berlin Heidelberg 2013</rights><rights>Springer-Verlag 2012.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-7e7efe5efc6b1470191e58d8046b430f7825a8f57fc96f05bbdafaffbd3ee9713</citedby><cites>FETCH-LOGICAL-c420t-7e7efe5efc6b1470191e58d8046b430f7825a8f57fc96f05bbdafaffbd3ee9713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00440-012-0414-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00440-012-0414-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids></links><search><creatorcontrib>Rohde, Angelika</creatorcontrib><creatorcontrib>Dümbgen, Lutz</creatorcontrib><title>Statistical inference for the optimal approximating model</title><title>Probability theory and related fields</title><addtitle>Probab. Theory Relat. Fields</addtitle><description>In the setting of high-dimensional linear models with Gaussian noise, we investigate the possibility of confidence statements connected to model selection. Although there exist numerous procedures for adaptive (point) estimation, the construction of adaptive confidence regions is severely limited (cf. Li in Ann Stat 17:1001–1008,
1989
). The present paper sheds new light on this gap. We develop exact and adaptive confidence regions for the best approximating model in terms of risk. One of our constructions is based on a multiscale procedure and a particular coupling argument. Utilizing exponential inequalities for noncentral
χ
2
-distributions, we show that the risk and quadratic loss of all models within our confidence region are uniformly bounded by the minimal risk times a factor close to one.</description><subject>Adaptation</subject><subject>Analysis</subject><subject>Approximation</subject><subject>Confidence</subject><subject>Confidence intervals</subject><subject>Construction</subject><subject>Economics</subject><subject>Finance</subject><subject>Gaussian</subject><subject>Generalized linear models</subject><subject>Hypotheses</subject><subject>Inequalities</subject><subject>Insurance</subject><subject>Management</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Noise</subject><subject>Normal distribution</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Probability</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Quantitative Finance</subject><subject>Random noise</subject><subject>Risk</subject><subject>Statistical inference</subject><subject>Statistics for Business</subject><subject>Studies</subject><subject>Theoretical</subject><issn>0178-8051</issn><issn>1432-2064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kM1LxDAQxYMouK7-Ad4KXrxEJ2m-epTFL1jwoJ5D2k7WLt12TbKg_71Z6kEEPc3A_N7jzSPknMEVA9DXEUAIoMA4BcEE1QdkxkTJKQclDskMmDbUgGTH5CTGNQDwUvAZqZ6TS11MXeP6ohs8BhwaLPwYivSGxbhN3SZf3HYbxo-8pm5YFZuxxf6UHHnXRzz7nnPyenf7snigy6f7x8XNkjaCQ6IaNXqU6BtVM6GBVQylaQ0IVYsSvDZcOuOl9k2lPMi6bp133tdtiVhpVs7J5eSbE7zvMCa76WKDfe8GHHfRMpUhyYVQGb34ha7HXRhyOsuVYlzp0pj_qGykuQEGMlNsopowxhjQ223I_4dPy8DuK7dT5TZXbveVW501fNLEzA4rDD-c_xR9AVTcgm0</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Rohde, Angelika</creator><creator>Dümbgen, Lutz</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20130401</creationdate><title>Statistical inference for the optimal approximating model</title><author>Rohde, Angelika ; Dümbgen, Lutz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-7e7efe5efc6b1470191e58d8046b430f7825a8f57fc96f05bbdafaffbd3ee9713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adaptation</topic><topic>Analysis</topic><topic>Approximation</topic><topic>Confidence</topic><topic>Confidence intervals</topic><topic>Construction</topic><topic>Economics</topic><topic>Finance</topic><topic>Gaussian</topic><topic>Generalized linear models</topic><topic>Hypotheses</topic><topic>Inequalities</topic><topic>Insurance</topic><topic>Management</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Noise</topic><topic>Normal distribution</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Probability</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Quantitative Finance</topic><topic>Random noise</topic><topic>Risk</topic><topic>Statistical inference</topic><topic>Statistics for Business</topic><topic>Studies</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rohde, Angelika</creatorcontrib><creatorcontrib>Dümbgen, Lutz</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Probability theory and related fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rohde, Angelika</au><au>Dümbgen, Lutz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical inference for the optimal approximating model</atitle><jtitle>Probability theory and related fields</jtitle><stitle>Probab. Theory Relat. Fields</stitle><date>2013-04-01</date><risdate>2013</risdate><volume>155</volume><issue>3-4</issue><spage>839</spage><epage>865</epage><pages>839-865</pages><issn>0178-8051</issn><eissn>1432-2064</eissn><coden>PTRFEU</coden><abstract>In the setting of high-dimensional linear models with Gaussian noise, we investigate the possibility of confidence statements connected to model selection. Although there exist numerous procedures for adaptive (point) estimation, the construction of adaptive confidence regions is severely limited (cf. Li in Ann Stat 17:1001–1008,
1989
). The present paper sheds new light on this gap. We develop exact and adaptive confidence regions for the best approximating model in terms of risk. One of our constructions is based on a multiscale procedure and a particular coupling argument. Utilizing exponential inequalities for noncentral
χ
2
-distributions, we show that the risk and quadratic loss of all models within our confidence region are uniformly bounded by the minimal risk times a factor close to one.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00440-012-0414-7</doi><tpages>27</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-8051 |
ispartof | Probability theory and related fields, 2013-04, Vol.155 (3-4), p.839-865 |
issn | 0178-8051 1432-2064 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671352446 |
source | Business Source Complete; Springer Nature - Complete Springer Journals |
subjects | Adaptation Analysis Approximation Confidence Confidence intervals Construction Economics Finance Gaussian Generalized linear models Hypotheses Inequalities Insurance Management Mathematical and Computational Biology Mathematical and Computational Physics Mathematics Mathematics and Statistics Noise Normal distribution Operations Research/Decision Theory Optimization Probability Probability Theory and Stochastic Processes Quantitative Finance Random noise Risk Statistical inference Statistics for Business Studies Theoretical |
title | Statistical inference for the optimal approximating model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T22%3A30%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20inference%20for%20the%20optimal%20approximating%20model&rft.jtitle=Probability%20theory%20and%20related%20fields&rft.au=Rohde,%20Angelika&rft.date=2013-04-01&rft.volume=155&rft.issue=3-4&rft.spage=839&rft.epage=865&rft.pages=839-865&rft.issn=0178-8051&rft.eissn=1432-2064&rft.coden=PTRFEU&rft_id=info:doi/10.1007/s00440-012-0414-7&rft_dat=%3Cproquest_cross%3E2661267388%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1357280105&rft_id=info:pmid/&rfr_iscdi=true |