Statistical inference for the optimal approximating model

In the setting of high-dimensional linear models with Gaussian noise, we investigate the possibility of confidence statements connected to model selection. Although there exist numerous procedures for adaptive (point) estimation, the construction of adaptive confidence regions is severely limited (c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Probability theory and related fields 2013-04, Vol.155 (3-4), p.839-865
Hauptverfasser: Rohde, Angelika, Dümbgen, Lutz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the setting of high-dimensional linear models with Gaussian noise, we investigate the possibility of confidence statements connected to model selection. Although there exist numerous procedures for adaptive (point) estimation, the construction of adaptive confidence regions is severely limited (cf. Li in Ann Stat 17:1001–1008, 1989 ). The present paper sheds new light on this gap. We develop exact and adaptive confidence regions for the best approximating model in terms of risk. One of our constructions is based on a multiscale procedure and a particular coupling argument. Utilizing exponential inequalities for noncentral χ 2 -distributions, we show that the risk and quadratic loss of all models within our confidence region are uniformly bounded by the minimal risk times a factor close to one.
ISSN:0178-8051
1432-2064
DOI:10.1007/s00440-012-0414-7