Single Electron Transistor-Based Gas Sensing With Tungsten Nanoparticles at Room Temperature

Single electron transistor (SET)-based gas sensors utilizing tungsten nanoparticles as conducting islands and operating at room temperature have been fabricated. Electrical characterization showed a strong correlation between the drain current of the SET device and the concentration of gas. The reve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2008-06, Vol.8 (6), p.797-802
Hauptverfasser: Karre, P.S.K., Acharya, M., Knudsen, W.R., Bergstrom, P.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Single electron transistor (SET)-based gas sensors utilizing tungsten nanoparticles as conducting islands and operating at room temperature have been fabricated. Electrical characterization showed a strong correlation between the drain current of the SET device and the concentration of gas. The reversible exposure to gas resulted in reduction of both the Coulomb blockade voltage and the drain current. The reduction in the drain current shows an oscillatory behavior, with the variation on the gate bias. The sensitivity of the gas sensor can be tuned by controlling the charge on the gate electrode. Relaxation times of 400 ms for a concentration of 36% of gas in were achieved. Although the SET sensor has not been demonstrated with sensitivities in the few tens of ppm compared with existing technologies, the response is very fast and the sensitivity can be tuned by modulating the gate bias. The sensor demonstrates the possibility of gas sensing using SET devices as sensitive electrometers. The sensitivity of the SET gas sensor is higher at lower concentrations.
ISSN:1530-437X
1558-1748
DOI:10.1109/JSEN.2008.923224