Macroscopic Human Behavior Interpretation Using Distributed Imager and Other Sensors
This paper presents BScope, a new system for interpreting human activity patterns using a sensor network. BScope provides a runtime, user-programmable framework that processes streams of timestamped sensor data along with prior context information to infer activities and generate appropriate notific...
Gespeichert in:
Veröffentlicht in: | Proceedings of the IEEE 2008-10, Vol.96 (10), p.1657-1677 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1677 |
---|---|
container_issue | 10 |
container_start_page | 1657 |
container_title | Proceedings of the IEEE |
container_volume | 96 |
creator | Lymberopoulos, Dimitrios Teixeira, Thiago Savvides, Andreas |
description | This paper presents BScope, a new system for interpreting human activity patterns using a sensor network. BScope provides a runtime, user-programmable framework that processes streams of timestamped sensor data along with prior context information to infer activities and generate appropriate notifications. The users of the system are able to describe human activities with high-level scripts that are directly mapped to hierarchical probabilistic grammars used to parse low-level sensor measurements into high-level distinguishable activities. Our approach is presented, though not limited, in the context of an assisted living application in which a small, privacy-preserving camera sensor network of five nodes is used to monitor activity in the entire house over a period of 25 days. Privacy is preserved by the fact that camera sensors only provide discrete high-level features, such as motion information in the form of image locations, and not actual images. In this deployment, our primary sensing modality is a distributed array of image sensors with wide-angle lenses that observe people's locations in the house during the course of the day. We demonstrate that our system can successfully generate summaries of everyday activities and trigger notifications at runtime by using more than 1.3 million location measurements acquired through our real home deployment. |
doi_str_mv | 10.1109/JPROC.2008.928761 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671350388</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4663207</ieee_id><sourcerecordid>903620371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c464t-eb8a2e57b872167db388e3caffaf5a6bb8c76f0710f5b146e416b65085a312833</originalsourceid><addsrcrecordid>eNqFkU1PwkAQhjdGExH9AcZL40G9FGd3ux89Kn6AwWAUzs22TGEJtLjbmvjvbcV48ICnmcPzvpnMQ8gphR6lEF8_vbyO-z0GoHsx00rSPdKhQuiQMSH3SQeA6jBmND4kR94vAYALyTtk8mwyV_qs3NgsGNRrUwS3uDAftnTBsKjQbRxWprJlEUy9LebBnfWVs2ld4SwYrs0cXWCKWTCuFs32hoUvnT8mB7lZeTz5mV0yfbif9AfhaPw47N-MwiySURViqg1DoVKtGJVqlnKtkWcmz00ujExTnSmZg6KQi5RGEiMqUylAC8Mp05x3yeW2d-PK9xp9laytz3C1MgWWtU9i4JIBV7QhL3aSPIq4VJFqwKudYHMn5QKaS_9HgbEYhKRt6_kfdFnWrmh-k2jJNIs1byG6hVoh3mGebJxdG_fZNCWt5ORbctJKTraSm8zZNmMR8ZePpOQMFP8C9lqhhw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862829837</pqid></control><display><type>article</type><title>Macroscopic Human Behavior Interpretation Using Distributed Imager and Other Sensors</title><source>IEEE Electronic Library (IEL)</source><creator>Lymberopoulos, Dimitrios ; Teixeira, Thiago ; Savvides, Andreas</creator><creatorcontrib>Lymberopoulos, Dimitrios ; Teixeira, Thiago ; Savvides, Andreas</creatorcontrib><description>This paper presents BScope, a new system for interpreting human activity patterns using a sensor network. BScope provides a runtime, user-programmable framework that processes streams of timestamped sensor data along with prior context information to infer activities and generate appropriate notifications. The users of the system are able to describe human activities with high-level scripts that are directly mapped to hierarchical probabilistic grammars used to parse low-level sensor measurements into high-level distinguishable activities. Our approach is presented, though not limited, in the context of an assisted living application in which a small, privacy-preserving camera sensor network of five nodes is used to monitor activity in the entire house over a period of 25 days. Privacy is preserved by the fact that camera sensors only provide discrete high-level features, such as motion information in the form of image locations, and not actual images. In this deployment, our primary sensing modality is a distributed array of image sensors with wide-angle lenses that observe people's locations in the house during the course of the day. We demonstrate that our system can successfully generate summaries of everyday activities and trigger notifications at runtime by using more than 1.3 million location measurements acquired through our real home deployment.</description><identifier>ISSN: 0018-9219</identifier><identifier>EISSN: 1558-2256</identifier><identifier>DOI: 10.1109/JPROC.2008.928761</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Activity grammars ; Arrays ; behavior recognition ; Biomedical monitoring ; camera sensor networks ; Cameras ; Houses ; Human ; Humans ; Image sensors ; Monitors ; Networks ; Privacy ; probabilistic context-free grammars (PCFGs) ; Runtime ; Sensor arrays ; Sensor phenomena and characterization ; Sensor systems ; Sensors ; Streaming media</subject><ispartof>Proceedings of the IEEE, 2008-10, Vol.96 (10), p.1657-1677</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c464t-eb8a2e57b872167db388e3caffaf5a6bb8c76f0710f5b146e416b65085a312833</citedby><cites>FETCH-LOGICAL-c464t-eb8a2e57b872167db388e3caffaf5a6bb8c76f0710f5b146e416b65085a312833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4663207$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4663207$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lymberopoulos, Dimitrios</creatorcontrib><creatorcontrib>Teixeira, Thiago</creatorcontrib><creatorcontrib>Savvides, Andreas</creatorcontrib><title>Macroscopic Human Behavior Interpretation Using Distributed Imager and Other Sensors</title><title>Proceedings of the IEEE</title><addtitle>JPROC</addtitle><description>This paper presents BScope, a new system for interpreting human activity patterns using a sensor network. BScope provides a runtime, user-programmable framework that processes streams of timestamped sensor data along with prior context information to infer activities and generate appropriate notifications. The users of the system are able to describe human activities with high-level scripts that are directly mapped to hierarchical probabilistic grammars used to parse low-level sensor measurements into high-level distinguishable activities. Our approach is presented, though not limited, in the context of an assisted living application in which a small, privacy-preserving camera sensor network of five nodes is used to monitor activity in the entire house over a period of 25 days. Privacy is preserved by the fact that camera sensors only provide discrete high-level features, such as motion information in the form of image locations, and not actual images. In this deployment, our primary sensing modality is a distributed array of image sensors with wide-angle lenses that observe people's locations in the house during the course of the day. We demonstrate that our system can successfully generate summaries of everyday activities and trigger notifications at runtime by using more than 1.3 million location measurements acquired through our real home deployment.</description><subject>Activity grammars</subject><subject>Arrays</subject><subject>behavior recognition</subject><subject>Biomedical monitoring</subject><subject>camera sensor networks</subject><subject>Cameras</subject><subject>Houses</subject><subject>Human</subject><subject>Humans</subject><subject>Image sensors</subject><subject>Monitors</subject><subject>Networks</subject><subject>Privacy</subject><subject>probabilistic context-free grammars (PCFGs)</subject><subject>Runtime</subject><subject>Sensor arrays</subject><subject>Sensor phenomena and characterization</subject><subject>Sensor systems</subject><subject>Sensors</subject><subject>Streaming media</subject><issn>0018-9219</issn><issn>1558-2256</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkU1PwkAQhjdGExH9AcZL40G9FGd3ux89Kn6AwWAUzs22TGEJtLjbmvjvbcV48ICnmcPzvpnMQ8gphR6lEF8_vbyO-z0GoHsx00rSPdKhQuiQMSH3SQeA6jBmND4kR94vAYALyTtk8mwyV_qs3NgsGNRrUwS3uDAftnTBsKjQbRxWprJlEUy9LebBnfWVs2ld4SwYrs0cXWCKWTCuFs32hoUvnT8mB7lZeTz5mV0yfbif9AfhaPw47N-MwiySURViqg1DoVKtGJVqlnKtkWcmz00ujExTnSmZg6KQi5RGEiMqUylAC8Mp05x3yeW2d-PK9xp9laytz3C1MgWWtU9i4JIBV7QhL3aSPIq4VJFqwKudYHMn5QKaS_9HgbEYhKRt6_kfdFnWrmh-k2jJNIs1byG6hVoh3mGebJxdG_fZNCWt5ORbctJKTraSm8zZNmMR8ZePpOQMFP8C9lqhhw</recordid><startdate>20081001</startdate><enddate>20081001</enddate><creator>Lymberopoulos, Dimitrios</creator><creator>Teixeira, Thiago</creator><creator>Savvides, Andreas</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20081001</creationdate><title>Macroscopic Human Behavior Interpretation Using Distributed Imager and Other Sensors</title><author>Lymberopoulos, Dimitrios ; Teixeira, Thiago ; Savvides, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c464t-eb8a2e57b872167db388e3caffaf5a6bb8c76f0710f5b146e416b65085a312833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Activity grammars</topic><topic>Arrays</topic><topic>behavior recognition</topic><topic>Biomedical monitoring</topic><topic>camera sensor networks</topic><topic>Cameras</topic><topic>Houses</topic><topic>Human</topic><topic>Humans</topic><topic>Image sensors</topic><topic>Monitors</topic><topic>Networks</topic><topic>Privacy</topic><topic>probabilistic context-free grammars (PCFGs)</topic><topic>Runtime</topic><topic>Sensor arrays</topic><topic>Sensor phenomena and characterization</topic><topic>Sensor systems</topic><topic>Sensors</topic><topic>Streaming media</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lymberopoulos, Dimitrios</creatorcontrib><creatorcontrib>Teixeira, Thiago</creatorcontrib><creatorcontrib>Savvides, Andreas</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>Proceedings of the IEEE</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lymberopoulos, Dimitrios</au><au>Teixeira, Thiago</au><au>Savvides, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Macroscopic Human Behavior Interpretation Using Distributed Imager and Other Sensors</atitle><jtitle>Proceedings of the IEEE</jtitle><stitle>JPROC</stitle><date>2008-10-01</date><risdate>2008</risdate><volume>96</volume><issue>10</issue><spage>1657</spage><epage>1677</epage><pages>1657-1677</pages><issn>0018-9219</issn><eissn>1558-2256</eissn><coden>IEEPAD</coden><abstract>This paper presents BScope, a new system for interpreting human activity patterns using a sensor network. BScope provides a runtime, user-programmable framework that processes streams of timestamped sensor data along with prior context information to infer activities and generate appropriate notifications. The users of the system are able to describe human activities with high-level scripts that are directly mapped to hierarchical probabilistic grammars used to parse low-level sensor measurements into high-level distinguishable activities. Our approach is presented, though not limited, in the context of an assisted living application in which a small, privacy-preserving camera sensor network of five nodes is used to monitor activity in the entire house over a period of 25 days. Privacy is preserved by the fact that camera sensors only provide discrete high-level features, such as motion information in the form of image locations, and not actual images. In this deployment, our primary sensing modality is a distributed array of image sensors with wide-angle lenses that observe people's locations in the house during the course of the day. We demonstrate that our system can successfully generate summaries of everyday activities and trigger notifications at runtime by using more than 1.3 million location measurements acquired through our real home deployment.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JPROC.2008.928761</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9219 |
ispartof | Proceedings of the IEEE, 2008-10, Vol.96 (10), p.1657-1677 |
issn | 0018-9219 1558-2256 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671350388 |
source | IEEE Electronic Library (IEL) |
subjects | Activity grammars Arrays behavior recognition Biomedical monitoring camera sensor networks Cameras Houses Human Humans Image sensors Monitors Networks Privacy probabilistic context-free grammars (PCFGs) Runtime Sensor arrays Sensor phenomena and characterization Sensor systems Sensors Streaming media |
title | Macroscopic Human Behavior Interpretation Using Distributed Imager and Other Sensors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T02%3A20%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Macroscopic%20Human%20Behavior%20Interpretation%20Using%20Distributed%20Imager%20and%20Other%20Sensors&rft.jtitle=Proceedings%20of%20the%20IEEE&rft.au=Lymberopoulos,%20Dimitrios&rft.date=2008-10-01&rft.volume=96&rft.issue=10&rft.spage=1657&rft.epage=1677&rft.pages=1657-1677&rft.issn=0018-9219&rft.eissn=1558-2256&rft.coden=IEEPAD&rft_id=info:doi/10.1109/JPROC.2008.928761&rft_dat=%3Cproquest_RIE%3E903620371%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=862829837&rft_id=info:pmid/&rft_ieee_id=4663207&rfr_iscdi=true |