Macroscopic Human Behavior Interpretation Using Distributed Imager and Other Sensors

This paper presents BScope, a new system for interpreting human activity patterns using a sensor network. BScope provides a runtime, user-programmable framework that processes streams of timestamped sensor data along with prior context information to infer activities and generate appropriate notific...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the IEEE 2008-10, Vol.96 (10), p.1657-1677
Hauptverfasser: Lymberopoulos, Dimitrios, Teixeira, Thiago, Savvides, Andreas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents BScope, a new system for interpreting human activity patterns using a sensor network. BScope provides a runtime, user-programmable framework that processes streams of timestamped sensor data along with prior context information to infer activities and generate appropriate notifications. The users of the system are able to describe human activities with high-level scripts that are directly mapped to hierarchical probabilistic grammars used to parse low-level sensor measurements into high-level distinguishable activities. Our approach is presented, though not limited, in the context of an assisted living application in which a small, privacy-preserving camera sensor network of five nodes is used to monitor activity in the entire house over a period of 25 days. Privacy is preserved by the fact that camera sensors only provide discrete high-level features, such as motion information in the form of image locations, and not actual images. In this deployment, our primary sensing modality is a distributed array of image sensors with wide-angle lenses that observe people's locations in the house during the course of the day. We demonstrate that our system can successfully generate summaries of everyday activities and trigger notifications at runtime by using more than 1.3 million location measurements acquired through our real home deployment.
ISSN:0018-9219
1558-2256
DOI:10.1109/JPROC.2008.928761