Fabrication and optical properties of ultrathin ferromagnet/superconductor metallic bilayers

Ferromagnet/superconductor (F/S) bilayers composed of ultrathin metallic films demonstrate new proximity effects and show a peculiar behavior of the superconductor-order parameter. In terms of applications, F films provide additional "anchoring" of the S film vortex lattice, resulting in i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2005-06, Vol.15 (2), p.2942-2945
Hauptverfasser: Pepe, G.P., Parlato, L., Latempa, R., D'Acunto, P., Marrocco, N., De Lisio, C., Altucci, C., Peluso, G., Barone, A., Taneda, T., Sobolewski, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ferromagnet/superconductor (F/S) bilayers composed of ultrathin metallic films demonstrate new proximity effects and show a peculiar behavior of the superconductor-order parameter. In terms of applications, F films provide additional "anchoring" of the S film vortex lattice, resulting in increased critical current. By changing composition and the thickness ratio of the F/S bilayer, one can modify the quasiparticle dynamics through an effective enhancement or suppression of the quasiparticle lifetime under nonequilibrium conditions. The latter effect should lead to "custom-designed" superconducting detectors, with the sensitivity and photoresponse speed tailored to a given application. We present fabrication details of nanometer-thickness NiCu/Nb bilayers of different F/S ratios. The NiCu/Nb structures have been implemented to fabricate Josephson junctions and tested using femtosecond optical spectroscopy. The time-resolved photoresponse experiments allowed us to measure the quasiparticle relaxation dynamics in our bilayers. In addition, the photoresponse temperature dependence studies revealed the spatial evolution of the superconductor-order parameter across the bilayer. Comparison between the bilayer data and the single-material data is also presented.
ISSN:1051-8223
1558-2515
DOI:10.1109/TASC.2005.848667