Atomistic simulation of the structural evolution in magnesium single crystal under c-axis tension
Molecalar dynamics simulation is applied to investigate the microstructure evolution of magnesium single crystals under c-axis extension at different temperatures. At low temperatures, both {1012} and {1011} twins are observed. At elevated temperatures, {1011} twining decreases quickly with increasi...
Gespeichert in:
Veröffentlicht in: | Acta metallurgica sinica : English letters 2011-12, Vol.24 (6), p.487-494 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Molecalar dynamics simulation is applied to investigate the microstructure evolution of magnesium single crystals under c-axis extension at different temperatures. At low temperatures, both {1012} and {1011} twins are observed. At elevated temperatures, {1011} twining decreases quickly with increasing temperature, while the amount of {1012} twins increases. The (1012} twin is found to be the main deformation mechanism under the c-axis tension in the magnesium single crystal. Meanwhile, shear bands are also observed during deformation. When the temperature is beyond 500 K, the non-basal plane slip due to the thermal .activation is found. The stress-strain curves related with deformation behavior at atomistic scale are presented. |
---|---|
ISSN: | 1006-7191 2194-1289 |
DOI: | 10.11890/1006-7191-116-487 |