Numerical approximation of transmission problems across Koch-type highly conductive layers
We prove a priori error estimates for a parabolic second order transmission problem across a prefractal interface K n of Koch type which divides a given domain Ω into two non-convex sub-domains Ω n i . By exploiting some regularity results for the solution in Ω n i we build a suitable mesh, complian...
Gespeichert in:
Veröffentlicht in: | Applied mathematics and computation 2012, Vol.218 (9), p.5453-5473 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove a priori error estimates for a parabolic second order transmission problem across a prefractal interface
K
n
of Koch type which divides a given domain
Ω into two non-convex sub-domains
Ω
n
i
. By exploiting some regularity results for the solution in
Ω
n
i
we build a suitable mesh, compliant with the so-called “Grisvard” conditions, which allows to achieve an optimal rate of convergence for the semidiscrete approximation of the prefractal problem by Galerkin method. The discretization in time is carried out by the
θ-method. |
---|---|
ISSN: | 0096-3003 1873-5649 |
DOI: | 10.1016/j.amc.2011.11.033 |