Study of ionic solvent-free carbon nanotube nanofluids and its composites with epoxy matrix

A facile way to synthesis ionic solvent-free multi-walled carbon nanotubes (CNTs) (MWNTs) nanofluids has been introduced. Fourier transform infrared spectra and transmission electron microscope (TEM) were employed to study the surface structure of MWNTs in the nanofluids. The thermal property of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology 2012-03, Vol.14 (3), p.1-10, Article 753
Hauptverfasser: Lan, L., Zheng, Y. P., Zhang, A. B., Zhang, J. X., Wang, Nan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A facile way to synthesis ionic solvent-free multi-walled carbon nanotubes (CNTs) (MWNTs) nanofluids has been introduced. Fourier transform infrared spectra and transmission electron microscope (TEM) were employed to study the surface structure of MWNTs in the nanofluids. The thermal property of the nanofluids was characterized by thermogravimetric analysis and differential scanning calorimetry. The stability of the nanofluids in the deionized water was obtained through UV–Vis absorption spectrum. Rotary rheometer was used to test the flow feature of the nanofluids. The results of conductivity indicate that the seepage threshold value of solvent-free nanofluids in water is about 0.408 vol.% (volume fraction). Meanwhile, it is found that the ionic nanofluids dispersed well in epoxy matrix. The mechanical properties, such as bend modulus, strength and impact toughness have been improved at the same time. TEM images can tell the great dispersion of solvent-free CNTs nanofluids in the epoxy matrix. It means that this kind of nanofluids will be excellent nanofiller in the nanocomposites.
ISSN:1388-0764
1572-896X
DOI:10.1007/s11051-012-0753-4