Singular limit and exact decay rate of a nonlinear elliptic equation

For any n≥3, 00, β>0, α≤β(n−2)/m, we prove the existence of radially symmetric solution of n−1mΔvm+αv+βx⋅∇v=0, v>0, in Rn, v(0)=η, without using the phase plane method. When 00 if 2β/(1−m)>max(α,0). For β>0 or α=0, we prove that the radially symmetric solution v(m) of the above elliptic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2012-05, Vol.75 (7), p.3443-3455
1. Verfasser: Hsu, Shu-Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For any n≥3, 00, β>0, α≤β(n−2)/m, we prove the existence of radially symmetric solution of n−1mΔvm+αv+βx⋅∇v=0, v>0, in Rn, v(0)=η, without using the phase plane method. When 00 if 2β/(1−m)>max(α,0). For β>0 or α=0, we prove that the radially symmetric solution v(m) of the above elliptic equation converges uniformly on every compact subset of Rn to the solution of an elliptic equation as m→0.
ISSN:0362-546X
1873-5215
DOI:10.1016/j.na.2012.01.009