Singular limit and exact decay rate of a nonlinear elliptic equation
For any n≥3, 00, β>0, α≤β(n−2)/m, we prove the existence of radially symmetric solution of n−1mΔvm+αv+βx⋅∇v=0, v>0, in Rn, v(0)=η, without using the phase plane method. When 00 if 2β/(1−m)>max(α,0). For β>0 or α=0, we prove that the radially symmetric solution v(m) of the above elliptic...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2012-05, Vol.75 (7), p.3443-3455 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For any n≥3, 00, β>0, α≤β(n−2)/m, we prove the existence of radially symmetric solution of n−1mΔvm+αv+βx⋅∇v=0, v>0, in Rn, v(0)=η, without using the phase plane method. When 00 if 2β/(1−m)>max(α,0). For β>0 or α=0, we prove that the radially symmetric solution v(m) of the above elliptic equation converges uniformly on every compact subset of Rn to the solution of an elliptic equation as m→0. |
---|---|
ISSN: | 0362-546X 1873-5215 |
DOI: | 10.1016/j.na.2012.01.009 |