The effect of mechanochemical treatments of sepiolite with CsCl on the calcination products

Calcination of sepiolite and of two sepiolite/CsCl mixtures, unground and air-ground was investigated by thermo-XRD-analysis. At 200 °C sepiolite, neat, mixed or air-ground with CsCl lost interparticle and zeolitic water. The framework of sepiolite persisted during the dehydration but became defecte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of thermal analysis and calorimetry 2010-03, Vol.99 (3), p.855-860
Hauptverfasser: Lapides, Isaak, Yariv, Shmuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Calcination of sepiolite and of two sepiolite/CsCl mixtures, unground and air-ground was investigated by thermo-XRD-analysis. At 200 °C sepiolite, neat, mixed or air-ground with CsCl lost interparticle and zeolitic water. The framework of sepiolite persisted during the dehydration but became defected, mainly in the air-ground mixture, less in the unground mixture and little in the neat clay. At 500 °C, with the loss of bound water, the neat clay was folded and transformed into sepiolite anhydride. In sepiolite/CsCl mixtures the dehydrated variety persisted but the degree of crystal-imperfection increased in the air-ground mixture more than in the unground mixture. At 700 °C the neat clay remained crystallized, but the CsCl mixtures became amorphous. Some crystalline dehydrated sepiolite or sepiolite anhydride persisted in the unground and air-ground CsCl mixtures, respectively. At 850 °C, the neat clay crystallized into protoenstatite with some enstatite and clinoenstatite. The amorphous fraction of sepiolite in the unground sepiolite/CsCl mixtures crystallized into pollucite and forsterite and the crystalline fraction was transformed into enstatite, protoenstatite, and clinoenstatite. In the air-ground mixture, the amorphous phase was transformed into pollucite with some forsterite and the crystalline fraction into enstatite.
ISSN:1388-6150
1588-2926
1572-8943
DOI:10.1007/s10973-009-0578-2