Effects of corner angle of trapezoidal and triangular channel cross-sections on electrical performance of silicon nanowire field-effect transistors with semi gate-around structure
Structural effects, especially corner angle of upper-corners of trapezoidal and rectangular, and triangular cross-sectional shapes of silicon nanowire field-effect transistors on effective carrier mobility and normalized inversion charge density have been investigated. 〈100〉-directed silicon nanowir...
Gespeichert in:
Veröffentlicht in: | Solid-state electronics 2011-11, Vol.65-66, p.2-8 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Structural effects, especially corner angle of upper-corners of trapezoidal and rectangular, and triangular cross-sectional shapes of silicon nanowire field-effect transistors on effective carrier mobility and normalized inversion charge density have been investigated. 〈100〉-directed silicon nanowire field-effect transistors with semi-gate around structure fabricated on (100)-oriented silicon-on-insulator wafers were evaluated. As the upper-corner angle decreased from obtuse to acute angle, we observed an increased amount of inversion charge using split-CV measurement. On the other hand, the effective carrier mobility dependence on the upper-corner angle seems to have an optimized point near 100° at 296K. Although normalized inversion charge density was the largest with acute angles, effective carrier mobility with acute upper-corner angle was severely degraded. Considering the intrinsic delay time of SiNW FET, SiNW FETs with trapezoidal cross-section with upper-corner angle of 100° is more suitable in this work to achieve high electrical performance. We believe these findings could represent guidelines for the design of high-performance SiNW FETs. |
---|---|
ISSN: | 0038-1101 1879-2405 |
DOI: | 10.1016/j.sse.2011.06.011 |